The present work investigates the tribological properties of castor oil with various carbonaceous friction modifiers (nano and microsize additives) assessed using four-ball tester as per ASTM D 4172 and ASTM D 2783. Castor oil has been chosen because of its high viscosity and ease of availability. Graphite, multiwalled carbon nanotube (MWCNT), and multilayered graphene are used as friction modifiers (FMs) in castor oil on weight percentage basis. Significant enhancements of tribological properties with a certain level of concentration of friction modifiers have been observed. The surface features of the tested balls were analyzed using a three-dimensional noncontact type profilometer, scanning electron microscope (SEM), and energy dispersive system (EDS). Decrease in surface roughness indicated better antiwear properties in case of nanofriction modifiers-based castor oil as compared to micrographite-based and neat castor oil (NCO). In order to assess the suitability of castor oil as a replacement for mineral oil, the results of castor oil samples are also compared with commercially available mineral oil. The tribological properties of castor oil are found to be competitive and generally superior to the mineral gear oil. The data generated are used to develop a neural network model to map the input–output correlation.

References

1.
Adhvaryu
,
A.
, and
Erhan
,
S. Z.
,
2002
, “
Epoxidized Soybean Oil as a Potential Source of High-Temperature Lubricants
,”
Ind. Crops Prod.
,
15
(
3
), pp.
247
254
.
2.
Lawate
,
S.
,
2006
, “
Environmentally Friendly Hydraulic Fluids
,”
Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology
,
Rudnick
,
L. R.
, ed.,
CRC Press
,
Boca Raton, FL
, pp.
20
34
.
3.
Fox
,
N. J.
, and
Stachowiak
,
G. W.
,
2007
, “
Vegetable Oil-Based Lubricants—A Review of Oxidation
,”
Tribol. Int.
,
40
(
7
), pp.
1035
1046
.
4.
Adhvaryu
,
A.
,
Erhan
,
S. Z.
, and Perez, J. M.,
2004
, “
Tribological Studies of Thermally and Chemically Modified Vegetable Oils for Use as Environmentally Friendly Lubricants
,”
Wear
,
257
(3–4), pp.
359
367
.
5.
Bekal
,
S.
, and
Bhat
,
N. R.
,
2012
, “
Bio-Lubricant as an Alternative to Mineral Oil for a CI Engine—An Experimental Investigation With Pongamia Oil as a Lubricant
,”
Energy Sources
,
34
(
11
), pp.
1016
1026
.
6.
Biresaw
,
G.
,
2006
, “
Elastohydrodynamic Properties of Seed Oils
,”
J. Am. Oil Chem. Soc.
,
83
(
6
), pp.
559
566
.
7.
Bhaumik
,
S.
, and
Pathak
,
S. D.
,
2016
, “
A Comparative Experimental Analysis of Tribological Properties Between Commercial Mineral Oil and Neat Castor Oil Using Taguchi Method in Boundary Lubrication Regime
,”
Tribol. Ind.
,
38
(
1
), pp.
33
44
.
8.
Imran
,
A.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Varman
,
M.
,
Hasmelidin
,
M.
,
Al Mahmud
,
K. A. H.
,
Shahir
,
S. A.
, and
Habibullah
,
M.
,
2013
, “
Study of Friction and Wear Characteristic of Jatropha Oil Blended Lube Oil
,”
Proc. Eng.
,
68
, pp.
178
185
.
9.
Ossia
,
C. V.
,
Han
,
H. G.
, and
Kong
,
H.
,
2008
, “
Additive Properties of Saturated Very Long Chain Fatty Acids in Castor and Jojoba Oils
,”
J. Mech. Sci. Technol.
,
22
(
8
), pp.
1527
1536
.
10.
Saad Elmunafi
,
M. H.
,
Kurniawan
,
D.
, and
Noordin
,
M. Y.
,
2015
, “
Use of Castor Oil as Cutting Fluid in Machining of Hardened Stainless Steel With Minimum Quantity of Lubricant
,”
Proc. CIRP
,
26
, pp.
408
411
.
11.
Shashidhara
,
Y. M.
, and
Jayaram
,
S. R.
,
2010
, “
Vegetable Oils as a Potential Cutting Fluid—An Evolution
,”
Tribol. Int.
,
43
(5–6), pp.
1073
1081
.
12.
Syahrullail
,
S.
,
Kamitanib
,
S.
, and
Shakirin
,
A.
,
2013
, “
Performance of Vegetable Oil as Lubricant in Extreme Pressure Condition
,”
Proc. Eng.
,
68
, pp.
172
177
.
13.
Yu
,
H. L.
,
Xu
,
Y.
,
Shi
,
P. J.
,
Wang
,
H. M.
,
Zhao
,
Y.
,
Xu
,
B. S.
, and Bai, Z. M.,
2010
, “
Tribological Behaviors of Surface-Coated Serpentine Ultrafine Powders as Lubricant Additive
,”
Tribol. Int.
,
43
(3), pp.
677
685
.
14.
Choi
,
Y.
,
Lee
,
C.
,
Hwang
,
Y.
,
Park
,
M.
,
Lee
,
J.
,
Choi
,
C.
, and Jung, M.,
2009
, “
Tribological Behavior of Copper Nanoparticles as Additives in Oil
,”
Curr. Appl. Phys.
,
9
(2), pp.
124
127
.
15.
Ginzburg
,
B. M.
,
Shibaev
,
L. A.
,
Kireenko
,
O. F.
,
Shepelevskii
,
A. A.
,
Baidakova
,
M. V.
, and
Sitnikova
,
A. A.
,
2002
, “
Antiwear Effect of Fullerene C60 Additives to Lubricating Oils
,”
Russ. J. Appl. Chem.
,
75
(
8
), pp.
1330
1335
.
16.
Xiaodong
,
Z.
,
Xun
,
F.
,
Huaqiang
,
S.
, and
Zhengshui
,
H.
,
2007
, “
Lubricating Properties of Cyanex 302-Modified MoS2 Microspheres in Base Oil 500SN
,”
Lubr. Sci.
,
19
(
1
), pp.
71
79
.
17.
Zhou
,
J.
,
Yang
,
J.
,
Zhang
,
Z.
,
Liu
,
W.
, and
Xue
,
Q.
,
1999
, “
Study on the Structure and Tribological Properties of Surface-Modified Cu Nanoparticles
,”
Mater. Res. Bull.
,
34
(
9
), pp.
1361
1367
.
18.
Zhou
,
J.
,
Wu
,
Z.
,
Zhang
,
Z.
,
Liu
,
W.
, and
Dang
,
H.
,
2001
, “
Study on an Antiwear and Extreme Pressure Additive of Surface Coated LaF3 Nanoparticles in Liquid Paraffin
,”
Wear
,
249
(
5–6
), pp.
333
337
.
19.
Zhang
,
B.-S.
,
Xu
,
B.-S.
,
Yi
,
X.
,
Gao
,
F.
,
Shi
,
P.-J.
, and
Wu
,
Y.-X.
,
2011
, “
CU Nanoparticles Effect on the Tribological Properties of Hydrosilicate Powders as Lubricant Additive for Steel–Steel Contacts
,”
Tribol. Int.
,
44
(7–8), pp.
878
886
.
20.
Tarasov
,
S.
,
Kolubaev
,
A.
,
Belyaev
,
S.
,
Lerner
,
M.
, and
Tepper
,
F.
,
2002
, “
Study of Friction Reduction by Nanocopper Additives to Motor Oil
,”
Wear
,
252
(1–2), pp.
63
69
.
21.
Wu
,
Y. Y.
,
Tsui
,
W. C.
, and
Liu
,
T. C.
,
2007
, “
Experimental Analysis of Tribological Properties of Lubricating Oils With Nanoparticle Additives
,”
Wear
,
262
(7–8), pp.
819
825
.
22.
Xiang
,
L.
,
Gao
,
C.
,
Wang
,
Y.
,
Pan
,
Z.
, and
Hu
,
D.
,
2014
, “
Tribological and Tribochemical Properties of Magnetite Nanoflakes as Additives in Oil Lubricants
,”
Particuology
,
17
, pp.
136
144
.
23.
Padgurskas
,
J.
,
Rukuiza
,
R.
,
Prosyčevas
,
I.
, and
Kreivaitis
,
R.
,
2013
, “
Tribological Properties of Lubricant Additives of Fe, Cu and Co Nanoparticles
,”
Tribol. Int.
,
60
, pp.
224
232
.
24.
Mohamed
,
K. A. A.
,
Xianjun
,
H.
,
Mai
,
L.
,
Qingping
,
C.
,
Turksona
,
R. F.
, and
Bicheng
,
C.
,
2016
, “
Improving the Tribological Characteristics of Piston Ring Assembly in Automotive Engines Using Al2O3 and TiO2 Nanomaterials as Nano-Lubricant Additives
,”
Tribol. Int.
,
103
, pp.
540
554
.
25.
Kimura
,
Y.
,
Wakabayashi
,
T.
,
Okada
,
K.
,
Wada
,
T.
, and
Nishikawa
,
H.
,
1999
, “
Boron Nitride as a Lubricant Additive
,”
Wear
,
232
(
2
), pp.
199
206
.
26.
Pawlak
,
Z.
,
Kaldonski
,
T.
,
Pai
,
R.
,
Bayraktar
,
E.
, and
Oloyede
,
A.
,
2009
, “
A Comparative Study on the Tribological Behaviour of Hexagonal Boron Nitride (H-BN) as Lubricating Micro-Particles—An Additive in Porous Sliding Bearings for a Car Clutch
,”
Wear
,
267
(
5–8
), pp.
1198
1202
.
27.
Demas
,
N. G.
,
Timofeeva
,
E. V.
,
Routbort
,
J. L.
, and
Fenske
,
G. R.
,
2012
, “
Tribological Effects of BN and MoS2 Nanoparticles Added to Polyalphaolefin Oil in Piston Skirt/Cylinder Liner Tests
,”
Tribol. Lett.
,
47
(
1
), pp.
91
102
.
28.
Elisa
,
R.
, and
Brune
,
H.
,
2003
, “
Young Modulus Dependence of Nanoscopic Friction Coefficient in Hard Coatings
,”
Appl. Phys. Lett.
,
83
(
10
), pp.
1986
1988
.
29.
Yu
,
B.
,
Liu
,
Z.
,
Ma
,
C.
,
Sun
,
J.
,
Liu
,
W.
, and
Zhou
,
F.
,
2015
, “
Ionic Liquid Modified Multi-Walled Carbon Nanotubes as Lubricant Additive
,”
Tribol. Int.
,
81
, pp.
38
42
.
30.
Nunn
,
N.
,
Mahbooba
,
Z.
,
Ivanov
,
M. G.
,
Ivanov
,
D. M.
,
Brenner
,
D. W.
, and
Shenderova
,
O.
,
2015
, “
Tribological Properties of Polyalphaolefin Oil Modified With Nanocarbon Additives
,”
Diamond Relat. Mater.
,
54
, pp.
97
102
.
31.
Bhushan
,
B.
,
Gupta
,
B. K.
, Van Cleef, G. W.,
Capp
,
C.
, and
Coe
,
J. V.
,
1993
, “
Fullerene (C60) Films for Solid Lubrication
,”
Tribol. Trans.
,
36
(
4
), pp.
573
580
.
32.
Bose
,
N. K.
, and
Liang
,
P.
,
1996
,
Neural Network Fundamentals With Graphs, Algorithms and Applications
,
McGraw-Hill
,
Hightstown, NJ
.
33.
Datta
,
S.
,
2016
,
Materials Design Using Computational Intelligence Techniques
,
CRC Press
,
Boca Raton, FL
.
34.
Datta
,
S.
, and
Chattopadhyay
,
P. P.
,
2013
, “
Soft Computing Techniques in Advancement of Structural Metals
,”
Int. Mater. Rev.
,
58
(
8
), pp.
475
504
.
35.
Ray
,
M.
,
Ganguly
,
S.
,
Das
,
M.
,
Datta
,
S.
,
Bandyopadhyay
,
N. R.
, and
Hossain
,
S. M.
,
2009
, “
Artificial Neural Network (ANN)-Based Model for In Situ Prediction of Porosity of Nanostructured Porous Silicon
,”
Mater. Manuf. Process.
,
24
(
1
), pp.
83
87
.
36.
Xiao
,
G.
, and
Zhu
,
Z.
,
2010
, “
Friction Materials Development by Using DOE/RSM and Artificial Neural Network
,”
Tribol. Int.
,
43
(1–2), pp.
218
227
.
37.
Gyurova
,
L. A.
, and
Friedrich
,
K.
,
2011
, “
Artificial Neural Networks for Predicting Sliding Friction and Wear Properties of Polyphenylene Sulfide Composites
,”
Tribol. Int.
,
44
(
5
), pp.
603
609
.
38.
Jiang
,
Z.
,
Gyurova
,
L.
,
Zhang
,
Z.
,
Friedrich
,
K.
, and
Schlarb
,
A. K.
,
2008
, “
Neural Network Based Prediction on Mechanical and Wear Properties of Short Fibers Reinforced Polyamide Composites
,”
Mater. Des.
,
29
(
3
), pp.
628
637
.
39.
Shahabuddin
,
M.
,
Masjuki
,
H. H.
,
Kalan
,
M. A.
,
Bhuiya
,
M. M. K.
, and
Mehat
,
H.
,
2013
, “
Comparative Tribological Investigation of Bio-Lubricant Formulated From a Non-Edible Oil Source (Jatropha Oil)
,”
Ind. Crops Prod.
,
47
, pp.
323
330
.
40.
Yan
,
Z. G.
,
2000
,
Technical Manual for Lubricant Performance Testing
,
Petroleum Industry Press
,
Beijing, China
.
41.
Wen
,
S. Z.
, and
Huang
,
P.
,
2008
,
Principles of Tribology
, 3rd ed.,
Tsinghua University Press
,
Beijing, China
.
42.
Hernandez Battez
,
A.
,
Gonzalez
,
R.
,
Fergueroso
,
D.
,
Fernandez
,
J. E.
,
Fernandez Rocio del
,
M.
,
Garcia
,
M. A.
, and
Penuelas
,
I.
,
2007
, “
Wear Prevention Behavior of Nanoparticle Suspension Under Extreme Pressure Conditions
,”
Wear
,
263
(7–12), pp.
1568
1574
.
43.
Dobson
,
G. R.
,
1978
, “
A Re-Examination of the Four Ball Test
,”
Tribol. Int.
,
11
(
1
), pp.
59
62
.
44.
Guhados
,
G.
,
Wan
,
W.
,
Sun
,
X.
, and
Hutter
,
J. L.
,
2007
, “
Simultaneous Measurement of Young's and Shear Moduli of Multiwalled Carbon Nanotubes Using Atomic Force Microscopy
,”
J. Appl. Phys.
,
101
(
3
), p.
033514
.
45.
Tsai
,
J. L.
, and
Tu
,
J. F.
,
2010
, “
Characterizing Mechanical Properties of Graphite Using Molecular Dynamics Simulation
,”
Mater. Des.
,
31
(
1
), pp.
194
199
.
46.
Kashyap
,
K. T.
, and
Patil
,
R. G.
,
2008
, “
On Young's Modulus of Multi-Walled Carbon Nanotubes
,”
Bull. Mater. Sci.
,
31
(
2
), pp.
185
187
.
47.
Kharissova
,
O. V.
, and
Kharisov
,
B. I.
,
2014
, “
Variations of Interlayer Spacing in Carbon Nanotubes
,”
RSC Adv.
,
4
(
58
), p.
30807
.
48.
Bhadeshia
,
H. K. D. H.
,
1999
, “
Neural Networks in Materials Science
,”
ISIJ Int.
, 99(10), pp.
966
979
.
49.
Bhadeshia
,
H. K. D. H.
,
2009
, “
Neural Networks and Information in Material Science
,”
Stat. Anal. Data Min.: ASA Data Sci. J.
, 1(5), pp.
296
305
.
50.
Olden
,
J. D.
,
Joy
,
M. K.
, and
Death
,
R. G.
,
2004
, “
An Accurate Comparison of Methods for Quantifying Variable Importance in Artificial Neural Networks Using Simulated Data
,”
Ecol. Model.
,
178
(3–4), pp.
389
397
.
51.
Ettefaghi
,
E.
,
Alimorad
,
R.
,
Ahmadi
,
H.
,
Mohtasebi
,
S. S.
, and
Pourkhalil
,
M.
,
2013
, “
Thermal and Rheological Properties of Oil-Based Nano Fluids From Different Carbon Nanostructures
,”
Int. Commun. Heat Mass Transfer
,
48
, pp.
178
182
.
52.
Martin
,
J. M.
,
Matta
,
C.
,
Bouchet
,
M.
,
Forest
,
C.
,
Mogne
,
T.
,
Dubois
,
T.
, and
Mazarin
,
M.
,
2013
, “
Mechanism of Friction Reduction of Unsaturated Fatty Acids as Additives in Diesel Fuels
,”
Friction
,
1
(
3
), pp.
252
258
.
53.
Ossia
,
C. V.
,
Han
,
H. G.
, and
Kong
,
H.
,
2008
, “
Response Surface Methodology for Eicosanoic Acid Triboproperties in Castor Oil
,”
Tribol. Int.
,
42
(1), pp.
50
58
.
54.
Reeves
,
C. J.
,
Menezes
,
P. L.
, and
Lovell
,
M. R.
,
2015
, “
The Influence of Surface Roughness and Particulate Size on the Tribological Performance of Bio-Based Multi-Functional Hybrid Lubricants
,”
Tribol. Int.
,
88
, pp.
40
55
.
55.
Bartz
,
W. Z.
,
1971
, “
Solid Lubricant Additives—Effect of Concentration and Other Additives on Anti-Wear Performance
,”
Wear
,
17
(
5–6
), pp.
421
432
.
56.
Zhang
,
L.
,
Jibin
,
P.
,
Liping
,
W.
, and
Qunji
,
X.
,
2014
, “
Synergistic Effect of Hybrid Carbon Nanotube–Graphene Oxide as Nanoadditive Enhancing the Frictional Properties of Ionic Liquids in High Vacuum
,”
Carbon
,
80
, pp.
734
745
.
57.
Cursaru
,
D. L.
,
Andronescu
,
C.
,
Pirvu
,
C.
, and
Ripeanu
,
R.
,
2012
, “
The Efficiency of Co-Based Single-Wall Carbon Nanotubes (SWNTs) as an AW/EP Additive for Mineral Base Oils
,”
Wear
,
290–291
, pp.
133
139
.
58.
Zhang
,
W.
,
Zhou
,
M.
,
Hu
,
H.
,
Tian
,
Y.
,
Wang
,
K.
,
Wei
,
J.
,
Ji
,
F.
,
Li
,
X.
,
Li
,
Z.
,
Zhang
,
P.
, and
Wu
,
D.
,
2011
, “
Tribological Properties of Oleic Acid Modified Graphene as Lubricant Oil Additives
,”
J. Phys. D: Appl. Phys.
,
44
(20), pp.
205
303
.
59.
Cornelio
,
J. A. C.
,
Cuervo
,
P. A.
,
Palacio
,
L. M. H.
,
Romero
,
J. L.
, and
Toro
,
A.
,
2016
, “
Tribological Properties of Carbon Nanotubes as Lubricant Additive in Oil and Water for a Wheel–Rail System
,”
J. Mater. Res. Technol.
,
5
(
1
), pp.
68
76
.
60.
Martin
,
J. M.
, and
Ohmae
,
N.
,
2008
,
Nanolubricants: Carbon-Based Nanolubricants
,
Wiley
,
Chichester, UK
.
61.
Ni
,
B.
, and
Sinnott
,
S. B.
,
2001
, “
Tribological Properties of Carbon Nanotube Bundles Predicted From Atomistic Simulations
,”
Surf. Sci.
,
487
(
1–3
), pp.
87
96
.
62.
Lin
,
J.
,
Wang
,
L.
, and
Chen
,
G.
,
2011
, “
Modification of Graphene Platelets and Their Tribological Properties as a Lubricant Additive
,”
Tribol. Lett.
,
41
(
1
), pp.
209
215
.
63.
Berman
,
D.
,
Erdemir
,
A.
, and
Sumant
,
A. V.
,
2013
, “
Reduced Wear and Friction Enabled by Graphene Layers on Sliding Steel Surfaces in Dry Nitrogen
,”
Carbon
,
59
, pp.
167
175
.
64.
Ni, W., Cheng, Y. T., Lukitsch, M. J., Weiner, A. M., and Lev, L. C., 2004, “
Effects of the Ratio of Hardness to Young's Modulus on the Friction and Wear Behavior of Bilayer Coatings
,”
Appl. Phys. Lett.
,
85
(
18
), pp.
4028
4030
.
65.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1950
,
Friction and Lubrication of Solids—Part I
,
Oxford University Press
,
New York
.
66.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
67.
Persson
,
B. N. J.
,
2000
,
Sliding Friction: Physical Principles and Applications
, 2nd ed.,
Springer
,
Berlin
.
68.
Greenwood
,
J. A.
,
1992
,
Fundamentals of Friction
,
Kluwer
,
Dordrecht, The Netherlands
.
69.
Delbé
,
K.
,
Mansot
,
J.-L.
,
Thomas
,
Ph.
,
Baranek
,
Ph.
,
Boucher
,
F.
,
Vangelisti
,
R.
, and
Billaud
,
D.
,
2012
, “
Contribution to the Understanding of Tribological Properties of Graphite Intercalation Compounds With Metal Chloride
,”
Tribol. Lett.
,
47
(
3
), pp.
367
379
.
70.
Gupta
,
B.
,
Kumar
,
N.
,
Panda
,
K.
,
Melvin
,
A. A.
,
Joshi
,
S.
,
Dash
,
S.
, and
Tyagi
,
A. K.
,
2016
, “
An Effective Noncovalent Functionalization of Poly(Ethylene Glycol) to Reduced Graphene Oxide Nanosheets Through γ-Radiolysis for Enhanced Lubrication
,”
J. Phys. Chem. C
,
120
(
4
), pp.
2139
2148
.
71.
Fall
,
A.
,
Weber
,
B.
,
Pakpour
,
M.
,
Lenoir
,
N.
,
Shahidzadeh
,
N.
,
Fiscina
,
J.
,
Wagner
,
C.
, and
Bonn
,
D.
,
2014
, “
Sliding Friction on Wet and Dry Sand
,”
Phys. Rev. Lett.
,
112
(
17
), p.
175502
.
72.
Restuccia
,
P.
, and
Clelia Righi
,
M.
,
2016
, “
Tribochemistry of Graphene on Iron and Its Possible Role in Lubrication of Steel
,”
Carbon
,
106
, pp.
118
124
.
You do not currently have access to this content.