In this paper, the antiwear and antifriction performance of MoS2 nanoparticle in castor oil was studied. The ball-on-disc tests were performed for different concentrations of MoS2 nanoparticle. Coefficient of friction, wear loss, and worn surface morphology were investigated. The results show that MoS2 nanoparticle could reduce the possibility of asperities direct contact, resulting in the reduction of the coefficient of friction and adhesive wear. However, MoS2 nanoparticle in excessive concentration could agglomerate into large particles, playing the role of an abrasive particle, which reduces the beneficial effects of MoS2 nanoparticle.
Issue Section:
Micro-Nano Tribology
References
1.
Sgroi
, M.
, Gili
, F.
, Mangherini
, D.
, Lahouij
, I.
, Dassenoy
, F.
, Garcia
, I.
, Odriozola
, I.
, and Kraft
, G.
, 2015
, “Friction Reduction Benefits in Valve-Train System Using IF-MoS2 Added Engine Oil
,” Tribol. Trans.
, 58
(2
), pp. 207
–214
. 2.
Wu
, H.
, Wang
, L.
, Johnson
, B.
, Yang
, S.
, Zhang
, J.
, and Dong
, G.
, 2017
, “Investigation on the Lubrication Advantages of MoS2 Nanosheets Compared With ZDDP Using Block-on-Ring Tests
,” Wear
, 394–395
, pp. 40
–49
. 3.
Sgroi
, M. F.
, Asti
, M.
, Gili
, F.
, Deorsola
, F. A.
, Bensaid
, S.
, Fino
, D.
, Kraft
, G.
, Garcia
, I.
, and Dassenoy
, F.
, 2017
, “Engine Bench and Road Testing of an Engine Oil Containing MoS2 Particles as Nano-Additive for Friction Reduction
,” Tribol. Int.
, 105
, pp. 317
–325
. 4.
Roberts
, E. W.
, 1990
, “Thin Solid Lubricant Films in Space
,” Tribol. Int.
, 23
(2
), pp. 95
–104
. 5.
Tannous
, J.
, Dassenoy
, F.
, Lahouij
, I.
, Mogne
, T. L.
, Vacher
, B.
, Bruhács
, A.
, and Tremel
, W.
, 2011
, “Understanding the Tribochemical Mechanisms of IF-MoS2 Nanoparticles Under Boundary Lubrication
,” Tribol. Lett.
, 41
(1
), pp. 55
–64
. 6.
Sgroi
, M.
, Gili
, F.
, Mangherini
, D.
, Lahouij
, I.
, Dassenoy
, F.
, Garcia
, I.
, Odriozola
, I.
, and Kraft
, G.
, 2015
, “Friction Reduction Benefits in Valve-Train System Using IF-MoS2 Added Engine Oil
,” Tribol. Trans.
, 58
(2
), pp. 207
–214
. 7.
Zhang
, W.
, Demydov
, D.
, Jahan
, M. P.
, Mistry
, K.
, Erdemir
, A.
, and Malshe
, A. P.
, 2012
, “Fundamental Understanding of the Tribological and Thermal Behavior of Ag-MoS2 Nanoparticle-Based Multi-Component Lubricating System
,” Wear
, 288
(3
), pp. 9
–16
. 8.
Kalin
, M.
, Kogovšek
, J.
, and Remškar
, M.
, 2013
, “Nanoparticles as Novel Lubricating Additives in a Green, Physically Based Lubrication Technology for DLC Coatings
,” Wear
, 303
(1–2
), pp. 480
–485
. 9.
Rapoport
, L.
, Feldman
, Y.
, Homyonfer
, M.
, Cohen
, H.
, Sloan
, J.
, Hutchison
, J. L.
, and Tenne
, R.
, 1999
, “Inorganic Fullerene-Like Material as Additives to Lubricants: Structure–Function Relationship
,” Wear
, 225–229
(4
), pp. 975
–982
. 10.
Lahouij
, I.
, Dassenoy
, F.
, Vacher
, B.
, and Martin
, J. M.
, 2012
, “Real Time TEM Imaging of Compression and Shear of Single Fullerene-Like MoS2 Nanoparticle
,” Tribol. Lett.
, 45
(1
), pp. 131
–141
. 11.
Rosentsveig
, R.
, Gorodnev
, A.
, Feuerstein
, N.
, Friedman
, H.
, Zak
, A.
, Fleischer
, N.
, Tannous
, J.
, Dassenoy
, F.
, and Tenne
, R.
, 2009
, “Fullerene-Like MoS2 Nanoparticles and Their Tribological Behavior
,” Tribol. Lett.
, 36
(2
), pp. 175
–182
. 12.
Chhowalla
, M.
, and Amaratunga
, G. A. J.
, 2000
, “Thin Films of Fullerene-Like MoS2 Nanoparticles With Ultra-Low Friction and Wear
,” Nature
, 407
(6801
), p. 164
. 13.
Demas
, N. G.
, Timofeeva
, E. V.
, Routbort
, J. L.
, and Fenske
, G. R.
, 2012
, “Tribological Effects of BN and MoS2 Nanoparticles Added to Polyalphaolefin Oil in Piston Skirt/Cylinder Liner Tests
,” Tribol. Lett.
, 47
(1
), pp. 91
–102
. 14.
Ochoa
, E. D. L. G.
, Otero
, J. E.
, Tanarro
, E. C.
, Munoz-Guijosa
, J. M.
, López
, B. D. R.
, and Cordero
, C. A.
, 2015
, “Analysis of the Effect of Different Types of Additives Added to a Low Viscosity Polyalphaolefin Base on Micropitting
,” Wear
, 322–323
, pp. 238
–250
. 15.
Ghaednia
, H.
, Jackson
, R. L.
, and Khodadadi
, J. M.
, 2015
, “Experimental Analysis of Stable CuO Nanoparticle Enhanced Lubricants
,” J. Exp. Nanosci.
, 10
(1
), pp. 1
–18
. 16.
Wan
, Q.
, Jin
, Y.
, Sun
, P.
, and Ding
, Y.
, 2015
, “Tribological Behaviour of a Lubricant Oil Containing Boron Nitride Nanoparticles
,” Procedia Eng.
, 102
, pp. 1038
–1045
. 17.
Peńa-Parás
, L.
, Maldonado-Cortés
, D.
, García
, P.
, Irigoyen
, M.
, Taha-Tijerina
, J.
, and Guerra
, J.
, 2017
, “Tribological Performance of Halloysite Clay Nanotubes as Green Lubricant Additives
,” Wear
, 376–377
(Part A
), pp. 885
–892
. 18.
Sia
, S. Y.
, Bassyony
, E. Z.
, and Sarhan
, A. A. D.
, 2014
, “Development of SiO2 Nanolubrication System to Be Used in Sliding Bearings
,” Int. J. Adv. Manuf. Technol.
, 71
(5–8
), pp. 1277
–1284
. Copyright © 2019 by ASME
You do not currently have access to this content.