Abstract

The Morton effect (ME) is a thermally induced vibration problem observed in a rotor supported by hydrodynamic bearings. The journal’s synchronous orbiting induces nonuniform viscous heating on its circumference, and the ensuing thermal bow often causes unacceptable vibration levels in the rotor. This paper investigates the influence of the tilting pad journal bearing (TPJB)’s pivot design on the severity and instability speed range of ME vibration. Simulations are conducted with two different types of pivots: cylindrical (CYL) and spherical (SPH), which produce different pad degrees-of-freedom and nonlinear pivot stiffness due to their geometries. The friction between pad and pivot, which only exists with the spherical pivot, is modeled, and its impact on the ME is evaluated. The example rotor model, as obtained from the literature, is single overhung, with experimentally measured excessive vibration and large journal temperature differentials, near 8000 rpm. The bearing and journal are modeled with three-dimensional (3D) finite elements, and the shaft with flexible beam elements for ME simulation. Nonlinear transient simulations are carried out for a wide operating speed range with varying pivot design parameters. Simulation results indicate that the predicted ME instability is sensitive to the pivot shape, pivot flexibility, and pad-pivot friction.

References

1.
Tong
,
X.
,
Palazzolo
,
A.
, and
Suh
,
J.
,
2017
, “
A Review of the Rotordynamic Thermally Induced Synchronous Instability (Morton) Effect
,”
ASME Appl. Mech. Rev.
,
69
(
6
), p.
060801
. 10.1115/1.4037216
2.
Shin
,
D.
,
Yang
,
J.
,
Tong
,
X.
,
Suh
,
J.
, and
Palazzolo
,
A.
,
2020
, “
A Review of Journal Bearing Thermal Effects on Rotordynamic Response
,”
ASME J. Tribol.
,
143
(
3
), p.
031803
. 10.1115/1.4048167
3.
de Jongh
,
F. M.
, and
Morton
,
P. G.
,
1996
, “
The Synchronous Instability of a Compressor Rotor Due to Bearing Journal Differential Heating
,”
ASME J. Eng. Gas Turbines Power
,
118
(
4
), pp.
816
824
. 10.1115/1.2816998
4.
de Jongh
,
F.
, and
Van Der Hoeven
,
P.
,
1998
, “
Application of a Heat Barrier Sleeve to Prevent Synchronous Rotor Instability
,”
27th Turbomachinery Symposium
,
College Station, TX
, pp.
17
26
.
5.
Keogh
,
P. S.
, and
Morton
,
P. G.
,
1993
, “
Journal Bearing Differential Heating Evaluation With Influence on Rotor Dynamic Behaviour
,”
Proc. R. Soc. London, Ser. A
,
441
(
1913
), pp.
527
548
. 10.1098/rspa.1993.0077
6.
Keogh
,
P.
, and
Morton
,
P.
,
1994
, “
The Dynamic Nature of Rotor Thermal Bending Due to Unsteady Lubricant Shearing Within a Bearing
,”
Proc. R. Soc. London, Ser. A
,
445
(
1924
), pp.
273
290
. 10.1098/rspa.1994.0061
7.
Lee
,
J. G.
, and
Palazzolo
,
A.
,
2012
, “
Morton Effect Cyclic Vibration Amplitude Determination for Tilt Pad Bearing Supported Machinery
,”
ASME J. Tribol.
,
135
(
1
), p.
011701
. 10.1115/1.4007884
8.
Suh
,
J.
, and
Palazzolo
,
A.
,
2014
, “
Three-Dimensional Thermohydrodynamic Morton Effect Simulation—Part I: Theoretical Model
,”
ASME J. Tribol.
,
136
(
3
), p.
031706
. 10.1115/1.4027309
9.
Suh
,
J.
, and
Palazzolo
,
A.
,
2014
, “
Three-Dimensional Thermohydrodynamic Morton Effect Analysis—Part II: Parametric Studies
,”
ASME J. Tribol.
,
136
(
3
), p.
031707
. 10.1115/1.4027310
10.
Tong
,
X.
,
Palazzolo
,
A.
, and
Suh
,
J.
,
2016
, “
Rotordynamic Morton Effect Simulation With Transient, Thermal Shaft Bow
,”
ASME J. Tribol.
,
138
(
3
), p.
031705
. 10.1115/1.4032961
11.
Tong
,
X.
, and
Palazzolo
,
A.
,
2016
, “
Double Overhung Disk and Parameter Effect on Rotordynamic Synchronous Instability—Morton Effect—Part I: Theory and Modeling Approach
,”
ASME J. Tribol.
,
139
(
1
), p.
011705
. 10.1115/1.4033888
12.
Tong
,
X.
, and
Palazzolo
,
A.
,
2016
, “
Double Overhung Disk and Parameter Effect on Rotordynamic Synchronous Instability—Morton Effect—Part II: Occurrence and Prevention
,”
ASME J. Tribol.
,
139
(
1
), p.
011706
. 10.1115/1.4033892
13.
Tong
,
X.
, and
Palazzolo
,
A.
,
2018
, “
Tilting Pad Gas Bearing Induced Thermal Bow Rotor Instability
,”
Tribol. Int.
,
121
, pp.
269
279
. 10.1016/j.triboint.2018.01.066
14.
Tong
,
X.
, and
Palazzolo
,
A.
,
2017
, “
Measurement and Prediction of the Journal Circumferential Temperature Distribution for the Rotordynamic Morton Effect
,”
ASME J. Tribol.
,
140
(
3
), p.
031702
. 10.1115/1.4038104
15.
Shin
,
D.
, and
Palazzolo
,
A. B.
,
2020
, “
Tilting Pad Journal Bearing Misalignment Effect on Thermally Induced Synchronous Instability (Morton Effect)
,”
ASME J. Tribol.
,
143
(
3
), p.
031802
. 10.1115/1.4048164
16.
Shin
,
D.
,
Palazzolo
,
A. B.
, and
Tong
,
X.
,
2020
, “
Squeeze Film Damper Suppression of Thermal Bow-Morton Effect Instability
,”
ASME J. Eng. Gas Turbines Power
,
142
(
12
), p.
121013
. 10.1115/1.4048602
17.
Childs
,
D. W.
, and
Saha
,
R.
,
2012
, “
A New, Iterative, Synchronous-Response Algorithm for Analyzing the Morton Effect
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
072501
. 10.1115/1.4005973
18.
Murphy
,
B. T.
, and
Lorenz
,
J. A.
,
2010
, “
Simplified Morton Effect Analysis for Synchronous Spiral Instability
,”
ASME J. Vib. Acoust.
,
132
(
5
), p.
051008
. 10.1115/1.4001512
19.
Kellenberger
,
W.
,
1980
, “
Spiral Vibrations Due to the Seal Rings in Turbogenerators Thermally Induced Interaction Between Rotor and Stator
,”
ASME J. Mech. Des.
,
102
(
1
), pp.
177
184
. 10.1115/1.3254710
20.
Kirk
,
G.
,
Guo
,
Z.
, and
Balbahadur
,
A.
,
2003
, “
Synchronous Thermal Instability Prediction for Overhung Rotors
,”
32nd Turbomachinery Symposium
,
Houston, TX
,
Sept. 8–11
, pp.
121
135
.
21.
Eckert
,
L.
, and
Schmied
,
J.
,
2008
, “
Spiral Vibration of a Turbogenerator Set: Case History, Stability Analysis, Measurements and Operational Experience
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
012509
. 10.1115/1.2747645
22.
Suh
,
J.
, and
Choi
,
Y.
,
2016
, “
Pivot Design and Angular Misalignment Effects on Tilting Pad Journal Bearing Characteristics: Four Pads for Load on Pad Configuration
,”
Tribol. Int.
,
102
, pp.
580
599
. 10.1016/j.triboint.2016.05.049
23.
Gadangi
,
R. K.
,
Palazzolo
,
A. B.
, and
Kim
,
J.
,
1996
, “
Transient Analysis of Plain and Tilt Pad Journal Bearings Including Fluid Film Temperature Effects
,”
ASME J. Tribol.
,
118
(
2
), pp.
423
430
. 10.1115/1.2831319
24.
San Andrés
,
L.
, and
Tao
,
Y.
,
2013
, “
The Role of Pivot Stiffness on the Dynamic Force Coefficients of Tilting Pad Journal Bearings
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
112505
. 10.1115/1.4025070
25.
Dang
,
P. V.
,
Chatterton
,
S.
, and
Pennacchi
,
P.
,
2019
, “
The Effect of the Pivot Stiffness on the Performances of Five-Pad Tilting Pad Bearings
,”
Lubricants
,
7
(
7
), p.
61
. 10.3390/lubricants7070061
26.
Childs
,
D.
, and
Harris
,
J.
,
2009
, “
Static Performance Characteristics and Rotordynamic Coefficients for a Four-Pad Ball-in-Socket Tilting Pad Journal Bearing
,”
ASME J. Eng. Gas Turbines Power
,
131
(
6
), p.
062502
. 10.1115/1.3098376
27.
Kulhanek
,
C. D.
, and
Childs
,
D. W.
,
2012
, “
Measured Static and Rotordynamic Coefficient Results for a Rocker-Pivot, Tilting-Pad Bearing With 50 and 60% Offsets
,”
ASME J. Eng. Gas Turbines Power
,
134
(
5
), p.
052505
. 10.1115/1.4004723
28.
Mehdi
,
S. M.
,
Jang
,
K.
, and
Kim
,
T.
,
2018
, “
Effects of Pivot Design on Performance of Tilting pad Journal Bearings
,”
Tribol. Int.
,
119
, pp.
175
189
. 10.1016/j.triboint.2017.08.025
29.
Young
,
W. C.
,
1989
,
Roark’s Formulas for Stress & Strain
, 6th ed.,
McGraw-Hill
,
New York
.
30.
Kirk
,
R. G.
, and
Reedy
,
S. W.
,
1988
, “
Evaluation of Pivot Stiffness for Typical Tilting-Pad Journal Bearing Designs
,”
ASME J. Vib. Acoust. Stress Reliab.
,
110
(
2
), pp.
165
171
. 10.1115/1.3269494
31.
Nicholas
,
J. C.
, and
Wygant
,
K. D.
,
1995
, “
Tilting Pad Journal Bearing Pivot Design
For
High Load Applications
,”
Proceedings of the 24th Turbomachinery Symposium
,
Houston, TX
, pp.
33
47
.
32.
Shi
,
Z.
,
Jin
,
Y.
, and
Yuan
,
X.
,
2019
, “
Influence of Pivot Design on Nonlinear Dynamic Analysis of Vertical and Horizontal Rotors in Tilting pad Journal Bearings
,”
Tribol. Int.
,
140
, p.
105859
. 10.1016/j.triboint.2019.105859
33.
Wygant
,
K. D.
,
Barrett
,
L. E.
, and
Flack
,
R. D.
,
1999
, “
Influence of Pad Pivot Friction on Tilting-Pad Journal Bearing Measurements—Part I: Steady Operating Position
,”
Tribol. Trans.
,
42
(
1
), pp.
210
215
. 10.1080/10402009908982210
34.
Wygant
,
K. D.
,
Barrett
,
L. E.
, and
Flack
,
R. D.
,
1999
, “
Influence of Pad Pivot Friction on Tilting-Pad Journal Bearing Measurements—Part II: Dynamic Coefficients
,”
Tribol. Trans.
,
42
(
1
), pp.
250
256
. 10.1080/10402009908982215
35.
Pettinato
,
B.
, and
De Choudhury
,
P.
,
1999
, “
Test Results of Key and Spherical Pivot Five-Shoe Tilt Pad Journal Bearings Part I: Performance Measurements
,”
Tribol. Trans.
,
42
(
3
), pp.
541
547
. 10.1080/10402009908982253
36.
Pettinato
,
B.
, and
De Choudhury
,
P.
,
1999
, “
Test Results of Key and Spherical Pivot Five-Shoe Tilt Pad Journal Bearings Part II: Dynamic Measurements
,”
Tribol. Trans.
,
42
(
3
), pp.
675
680
. 10.1080/10402009908982269
37.
Sabnavis
,
G.
,
2005
, “
Test Results for Shaft Tracking Behavior of Pads in a Spherical Pivot Type Tilting Pad Journal Bearing
,”
M.S. thesis
,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
38.
Kim
,
S.
, and
Kim
,
K.
,
2008
, “
Influence of Pad Pivot Friction on Tilting Pad Journal Bearing
,”
Tribol. Int.
,
41
(
8
), pp.
694
703
. 10.1016/j.triboint.2007.12.003
39.
He
,
F.
,
2017
, “
Including Pivot Friction in Pad Motion for a Tilting Pad Journal Bearing With Ball-Socket Pivots
,”
ASME Proceedings, Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, p.
V07AT34A036
.
40.
Kim
,
S.
, and
Palazzolo
,
A. B.
,
2019
, “
Pad–Pivot Friction Effect on Nonlinear Response of a Rotor Supported by Tilting-Pad Journal Bearings
,”
ASME J. Tribol.
,
141
(
9
), p.
091701
. 10.1115/1.4043971
41.
Lu
,
X.
,
Khonsari
,
M. M.
, and
Gelinck
,
E. R. M.
,
2006
, “
The Stribeck Curve: Experimental Results and Theoretical Prediction
,”
ASME J. Tribol.
,
128
(
4
), pp.
789
794
. 10.1115/1.2345406
42.
Heinrich
,
J.
,
Huyakorn
,
P.
,
Zienkiewicz
,
O.
, and
Mitchell
,
A.
,
1977
, “
An ‘Upwind’ Finite Element Scheme for Two-Dimensional Convective Transport Equation
,”
Int. J. Numer. Methods Eng.
,
11
(
1
), pp.
131
143
. 10.1002/nme.1620110113
You do not currently have access to this content.