Abstract

In the course of the selective laser melting (SLM) process, the part is built layer by layer involving partial remelting/heating of the previous layer, called as intrinsic heat treatment. Therefore, superficial properties of as-built parts are somewhat different from that of the inside of the part. In this work, the nano-tribological behavior of the commercial pure Ti (CP-Ti) sample built using SLM was investigated considering the near-surface regions with focus on the effect of intrinsic heat treatment. Microstructure and nano-testing allow identifying specific sliding behaviors in three attitude regions: (I) surface (0–50 µm), (II) subsurface (50–200 µm), and (III) inner-part (below 200 µm). The average hardness drops slightly when moving from Regions I and II (3.35 GPa) to Region III (3.09 GPa). The coefficient of friction (COF) values vary from 0.18 to 0.45 for all three regions, and the Region III presents highest worn trace width of 5.8 μm. Regions I and III promote a stick-and-slip behavior while sliding is smooth and continuous in Region II. This gradient microstructural characterization enables associating the behavior of Region II to large-sized lath martensite α′ morphology, which is different from the Regions I and III with finer microstructure. A finite element analysis (FEA) thermal model suggests that the existence of the three identified regions is the consequence of the intrinsic heat treatment induced by the SLM process, in which the remelting/heating and recrystallization have been considered as the main reasons for microstructure coarsening and refinement between Regions I and II, Regions II and III, respectively.

References

1.
Kruth
,
J. P.
,
Leu
,
M. C.
, and
Nakagawa
,
T.
,
1998
, “
Progress in Additive Manufacturing and Rapid Prototyping
,”
CIRP Ann.—Manuf. Technol.
,
47
(
2
), pp.
525
540
. 10.1016/S0007-8506(07)63240-5
2.
Olakanmi
,
E. O.
,
Cochrane
,
R. F.
, and
Dalgarno
,
K. W.
,
2015
, “
A Review on Selective Laser Sintering/Melting (SLS/SLM) of Aluminium Alloy Powders: Processing, Microstructure, and Properties
,”
Prog. Mater. Sci.
,
74
, pp.
401
477
. 10.1016/j.pmatsci.2015.03.002
3.
Gusarov
,
A. V.
,
Yadroitsev
,
I.
,
Bertrand
,
P.
, and
Smurov
,
I.
,
2007
, “
Heat Transfer Modelling and Stability Analysis of Selective Laser Melting
,”
Appl. Surf. Sci.
,
254
(
4
), pp.
975
979
. 10.1016/j.apsusc.2007.08.074
4.
Ezugwu
,
E. O.
, and
Wang
,
Z. M.
,
1997
, “
Titanium Alloys and Their Machinability—A Review
,”
J. Mater. Process. Technol.
,
68
(
3
), pp.
262
274
. 10.1016/S0924-0136(96)00030-1
5.
Gu
,
D.
,
Hagedorn
,
Y. C.
,
Meiners
,
W.
,
Meng
,
G.
,
Batista
,
R. J. S.
,
Wissenbach
,
K.
, and
Poprawe
,
R.
,
2012
, “
Densification Behavior, Microstructure Evolution, and Wear Performance of Selective Laser Melting Processed Commercially Pure Titanium
,”
Acta Mater.
,
60
(
9
), pp.
3849
3860
. 10.1016/j.actamat.2012.04.006
6.
Fischer
,
P.
,
Romano
,
V.
,
Weber
,
H. P.
,
Karapatis
,
N. P.
,
Boillat
,
E.
, and
Glardon
,
R.
,
2003
, “
Sintering of Commercially Pure Titanium Powder With a Nd:YAG Laser Source
,”
Acta Mater.
,
51
(
6
), pp.
1651
1662
. 10.1016/S1359-6454(02)00567-0
7.
Attar
,
H.
,
Prashanth
,
K. G.
,
Chaubey
,
A. K.
,
Calin
,
M.
,
Zhang
,
L. C.
,
Scudino
,
S.
, and
Eckert
,
J.
,
2015
, “
Comparison of Wear Properties of Commercially Pure Titanium Prepared by Selective Laser Melting and Casting Processes
,”
Mater. Lett.
,
142
, pp.
38
41
. 10.1016/j.matlet.2014.11.156
8.
Deuis
,
R. L.
,
Subramanian
,
C.
, and
Yellupb
,
J. M.
,
1997
, “
Dry Sliding Wear of Aluminium Composite—A Review
,”
Compos. Sci. Technol.
,
57
(
4
), pp.
415
435
. 10.1016/S0266-3538(96)00167-4
9.
Attar
,
H.
,
Calin
,
M.
,
Zhang
,
L. C.
,
Scudino
,
S.
, and
Eckert
,
J.
,
2014
, “
Manufacture by Selective Laser Melting and Mechanical Behavior of Commercially Pure Titanium
,”
Mater. Sci. Eng. A
,
593
, pp.
170
177
. 10.1016/j.msea.2013.11.038
10.
Simonelli
,
M.
,
Tse
,
Y. Y.
, and
Tuck
,
C.
,
2014
, “
On the Texture Formation of Selective Laser Melted Ti-6Al-4V
,”
Metall. Mater. Trans. A
,
45
(
6
), pp.
2863
2872
. 10.1007/s11661-014-2218-0
11.
Thijs
,
L.
,
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Van Humbeeck
,
J.
, and
Kruth
,
J. P.
,
2010
, “
A Study of the Microstructural Evolution During Selective Laser Melting of Ti–6Al–4V
,”
Acta Mater.
,
58
(
9
), pp.
3303
3312
. 10.1016/j.actamat.2010.02.004
12.
Kang
,
N.
,
Yuan
,
H.
,
Coddet
,
P.
,
Ren
,
Z.
,
Bernage
,
C.
,
Liao
,
H.
, and
Coddet
,
C.
,
2017
, “
On the Texture, Phase and Tensile Properties of Commercially Pure Ti Produced via Selective Laser Melting Assisted by Static Magnetic Field
,”
Mater. Sci. Eng. C
,
70
, pp.
405
407
. 10.1016/j.msec.2016.09.011
13.
Ren
,
Y. M.
,
Lin
,
X.
,
Fu
,
X.
,
Tan
,
H.
,
Chen
,
J.
, and
Huang
,
W. D.
,
2017
, “
Microstructure and Deformation Behavior of Ti-6Al-4V Alloy by High-Power Laser Solid Forming
,”
Acta Mater.
,
132
, pp.
82
95
. 10.1016/j.actamat.2017.04.026
14.
Pesach
,
A.
,
Tiferet
,
E.
,
Vogel
,
S. C.
,
Chonin
,
M.
,
Diskin
,
A.
,
Zilberman
,
L.
,
Rivin
,
O.
,
Yeheskel
,
O.
, and
Caspi
,
E. N.
,
2018
, “
Texture Analysis of Additively Manufactured Ti-6Al-4V Using Neutron Diffraction
,”
Addit. Manuf.
,
23
, pp.
394
401
. 10.1016/j.addma.2018.08.010
15.
Liu
,
Y. J.
,
Liu
,
Z.
,
Jiang
,
Y.
,
Wang
,
G. W.
,
Yang
,
Y.
, and
Zhang
,
L. C.
,
2018
, “
Gradient in Microstructure and Mechanical Property of Selective Laser Melted AlSi10Mg
,”
J. Alloys Compd.
,
735
, pp.
1414
1421
. 10.1016/j.jallcom.2017.11.020
16.
Kang
,
N.
,
Lin
,
X.
,
El Mansori
,
M.
,
Wang
,
Q. Z.
,
Lu
,
J. L.
,
Coddet
,
C.
, and
Huang
,
W. D.
,
2020
, “
On the Effect of the Thermal Cycle During the Directed Energy Deposition Application to the In-Situ Production of a Ti-Mo Alloy Functionally Graded Structure
,”
Addit. Manuf.
,
31
, p.
100911
. 10.1016/j.addma.2019.100911
17.
Krakhmalev
,
P.
,
Yadroitsava
,
I.
,
Fredriksson
,
G.
, and
Yadroitsev
,
I.
,
2015
, “
In Situ Heat Treatment in Selective Laser Melted Martensitic AISI 420 Stainless Steels
,”
Mater. Des.
,
87
, pp.
380
385
. 10.1016/j.matdes.2015.08.045
18.
Damon
,
J.
,
Koch
,
R.
,
Kaiser
,
D.
,
Graf
,
G.
,
Dietrich
,
S.
, and
Schulze
,
V.
,
2019
, “
Process Development and Impact of Intrinsic Heat Treatment on the Mechanical Performance of Selective Laser Melted AISI 4140
,”
Addit. Manuf.
,
28
, pp.
275
284
. 10.1016/j.addma.2019.05.012
19.
Kruth
,
J. P.
,
Wang
,
X.
,
Laoui
,
T.
, and
Froyen
,
L.
,
2003
, “
Lasers and Materials in Selective Laser Sintering
,”
Assem. Autom.
,
23
(
4
), pp.
357
371
. 10.1108/01445150310698652
20.
Cao
,
Y.
,
2020
, “
Numerical Modeling of Thermo-Mechanical Coupling Behaviours of Selective Laser Melting in AlSi10Mg
,”
Master dissertation
,
Northwestern Polytechnical University
,
Xi’an, China
.
21.
Lu
,
X.
,
Lin
,
X.
,
Chiumenti
,
M.
,
Cervera
,
M.
,
Li
,
J.
,
Ma
,
L.
,
Wei
,
L.
,
Hu
,
Y.
, and
Huang
,
W.
,
2018
, “
Finite Element Analysis and Experimental Validation of the Thermomechanical Behavior in Laser Solid Forming of Ti-6Al-4V
,”
Addit. Manuf.
,
21
, pp.
394
401
. 10.1016/j.addma.2018.02.003
22.
Kang
,
N.
,
El Mansori
,
M.
,
Coniglio
,
N.
, and
Coddet
,
C.
,
2018
, “
Nano-Wear-Induced Behavior of Selective Laser Melting Commercial Pure Titanium
,”
Procedia Manuf.
,
26
, pp.
1034
1040
. 10.1016/j.promfg.2018.07.136
23.
Mercelis
,
P.
, and
Kruth
,
J. P.
,
2006
, “
Residual Stresses in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyping J.
,
12
(
5
), pp.
254
265
. 10.1108/13552540610707013
24.
Zhong
,
H. Z.
,
Zhang
,
X. Y.
,
Wang
,
S. X.
, and
Gu
,
J. F.
,
2018
, “
Examination of the Twinning Activity in Additively Manufactured Ti-6Al-4V
,”
Mater. Des.
,
144
, pp.
14
24
. 10.1016/j.matdes.2018.02.015
25.
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Heulens
,
J.
, and
Pandelaers
,
L.
,
2009
, “
A Pragmatic Model for Selective Laser Melting With Evaporation
,”
Acta Mater.
,
57
(
20
), pp.
6006
6012
. 10.1016/j.actamat.2009.08.027
26.
Kang
,
N.
,
Coddet
,
P.
,
Liu
,
Q.
,
Liao
,
H. L.
, and
Coddet
,
C.
,
2016
, “
In-Situ TiB/Near α Ti Matrix Composites Manufactured by Selective Laser Melting
,”
Addit. Manuf.
,
11
, pp.
1
4
. 10.1016/j.addma.2016.04.001
27.
Suh
,
N. P.
,
1973
, “
The Delamination Theory of Wear
,”
Wear
,
25
(
1
), pp.
111
124
. 10.1016/0043-1648(73)90125-7
28.
Zhang
,
M.
,
Zhang
,
J.
, and
McDowell
,
D. L.
,
2007
, “
Microstructure-Based Crystal Plasticity Modeling of Cyclic Deformation of Ti–6Al–4V
,”
Inter. J. Plast.
,
23
(
8
), pp.
1328
1348
. 10.1016/j.ijplas.2006.11.009
29.
Ojha
,
A.
, and
Sehitoglu
,
H.
,
2016
, “
Critical Stresses for Twinning, Slip, and Transformation in Ti-Based Shape Memory Alloys
,”
Shape Mem. Superplast.
,
2
(
2
), pp.
180
195
. 10.1007/s40830-016-0061-4
30.
Weiss
,
I.
,
Froes
,
F. H.
,
Eylon
,
D.
, and
Welsch
,
G. E.
,
1986
, “
Modification of Alpha Morphology in Ti-6Al-4V by Thermomechanical Processing
,”
Metall. Trans. A
,
17
(
11
), pp.
1935
1947
. 10.1007/BF02644991
31.
Sabban
,
R.
,
Bahl
,
S.
,
Chatterjee
,
K.
, and
Suwas
,
S.
,
2019
, “
Globularization Using Heat Treatment in Additively Manufactured Ti-6Al-4V for High Strength and Toughness
,”
Acta Mater.
,
162
, pp.
239
254
. 10.1016/j.actamat.2018.09.064
You do not currently have access to this content.