Abstract

In this study, a non-Newtonian, transient, isothermal, mixed elastohydrodynamic lubrication (EHL) model is proposed for helical gear contacts. The model accounts for nonelliptical contacts subject to spatially varying sliding and rolling velocity fields that are not aligned with any principal axis of the contact region, which is the case for helical gear contacts. The time-varying changes pertaining to key contact parameters and relative motion of roughness profiles on mating tooth surfaces are captured simultaneously to follow the contact from the root to the tip of a tooth while accounting for the transient effect due to relative motions of the roughness profiles. Actual tooth load distributions, contact kinematics, and compliances of helical gear contacts are provided to this model by an existing helical gear load distribution model. Measured three-dimensional roughness profiles covering the entire meshing zone are incorporated in the analyses to investigate its impact on the EHL conditions as well as mechanical power loss. Results of a parametric sensitivity study are presented to demonstrate the influence of operating conditions and surface roughness on the EHL behavior and the resultant gear mesh mechanical power loss of an example helical gear pair. The accuracy of the proposed mixed-EHL model is assessed by comparing the mechanical power loss predictions to available experimental results.

References

1.
Pedrero
,
J. I.
,
1999
, “
Determination of the Efficiency of Cylindrical Gear Sets
,”
4th World Congress on Gearing and Power Transmission
,
Paris, France
,
Mar. 16–18
, pp.
297
302
.
2.
Michlin
,
Y.
, and
Myunster
,
V.
,
2002
, “
Determination of Power Losses in Gear Transmissions With Rolling and Sliding Friction Incorporated
,”
Mech. Mach. Theory
,
37
(
2
), pp.
167
174
. 10.1016/S0094-114X(01)00070-2
3.
Misharin
,
Y. A.
,
1958
, “
Influence of the Friction Condition on the Magnitude of the Friction Coefficient in the Case of Rollers With Sliding
,”
Proceedings of International Conference on Gearing, Institute of Mechanical Engineers
,
London
, pp.
159
164
.
4.
Benedict
,
G. H.
, and
Kelly
,
B. W.
,
1960
, “
Instantaneous Coefficients of Gear Tooth Friction
,”
Trans. ASLE
,
4
(
1
), pp.
57
70
.
5.
Xu
,
H.
,
Kahraman
,
A.
,
Anderson
,
N. E.
, and
Maddock
,
D.
,
2007
, “
Prediction of Mechanical Efficiency of Parallel-Axis Gear Pairs
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
58
68
. 10.1115/1.2359478
6.
Li
,
S.
, and
Kahraman
,
A.
,
2011
, “
A Method to Derive Friction and Rolling Power Loss Formulae for Mixed Elastohydrodynamic Lubrication
,”
JSME J. Adv. Mech. Des. Syst. Manuf.
,
5
(
4
), pp.
252
263
. 10.1299/jamdsm.5.252
7.
Li
,
S.
, and
Kahraman
,
A.
,
2009
, “
A Mixed EHL Model With Asymmetric Integrated Control Volume Discretization
,”
Tribol. Int.
,
42
(
8
), pp.
1163
1172
. 10.1016/j.triboint.2009.03.020
8.
Li
,
S.
,
Vaidyanathan
,
A.
,
Harianto
,
J.
, and
Kahraman
,
A.
,
2009
, “
Influence of Design Parameters on Mechanical Power Losses of Helical Gear Pairs
,”
JSME J. Adv. Mech. Des. Syst. Manuf.
,
3
(
2
), pp.
146
158
. 10.1299/jamdsm.3.146
9.
Li
,
S.
,
Kahraman
,
A.
, and
Klein
,
M.
,
2012
, “
A Fatigue Model for Spur Gear Contacts Operating Under Mixed-Elastohydrodynamic Lubrication Conditions
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041007
. 10.1115/1.4005655
10.
Li
,
S.
, and
Kahraman
,
A.
,
2013
, “
Micro-pitting Fatigue Lives of Lubricated Point Contacts: Experiments and Model Validation
,”
Int. J. Fatigue
,
48
, pp.
9
18
. 10.1016/j.ijfatigue.2012.12.003
11.
Li
,
S.
, and
Kahraman
,
A.
,
2013
, “
A Physics-Based Model to Predict Micro-Pitting Fatigue Lives of Lubricated Point Contacts
,”
Int. J. Fatigue
,
47
, pp.
205
215
. 10.1016/j.ijfatigue.2012.09.002
12.
Li
,
S.
,
Kahraman
,
A.
,
Anderson
,
N.
, and
Wedeven
,
L. D.
,
2013
, “
A Model to Predict Scuffing Failures of a Ball-on-Disk Contact
,”
Tribol. Int.
,
60
, pp.
233
245
. 10.1016/j.triboint.2012.11.007
13.
Li
,
S.
, and
Kahraman
,
A.
,
2013
, “
A Tribo-Dynamic Model of a Spur Gear Pair
,”
J. Sound Vibr.
,
332
(
20
), pp.
4963
4978
. 10.1016/j.jsv.2013.04.022
14.
Li
,
S.
, and
Kahraman
,
A.
,
2011
, “
A Spur Gear Mesh Interface Damping Model Based on Elastohydrodynamic Contact Behaviour
,”
Int. J. Powertrains
,
1
(
1
), pp.
4
21
. 10.1504/IJPT.2011.041907
15.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1964
, “
A Theory of Involute Gear Lubrication
,”
Proceeding of a Symposium Organized by the Mechanical Tests of Lubricants Panel of the Institute, Institute of Petroleum, Gear Lubrication
,
Elsevier
,
London
, pp.
8
15
.
16.
Martin
,
K. F.
,
1981
, “
The Efficiency of Involute Spur Gears
,”
ASME J. Mech. Des.
,
103
(
1
), pp.
160
169
. https://doi.org/10.1115/1.3254855
17.
Wu
,
S.
, and
Cheng
,
H. S.
,
1991
, “
A Friction Model of Partial-EHL Contacts and Its Application to Power Loss in Spur Gears
,”
Tribol. Trans.
,
34
(
3
), pp.
398
407
. 10.1080/10402009108982050
18.
Li
,
S.
, and
Kahraman
,
A.
,
2010
, “
A Transient Mixed Elastohydrodynamic Lubrication Model for Spur Gear Pairs
,”
ASME J. Tribol.
,
132
(
1
), p.
011501
. 10.1115/1.4000270
19.
Akbarzadeh
,
S.
, and
Khonsari
,
M. M.
,
2008
, “
Performance of Spur Gears Considering Surface Roughness and Shear Thinning Lubricant
,”
ASME J. Tribol.
,
130
(
2
), p.
021503
. 10.1115/1.2805431
20.
Gu
,
A.
,
1973
, “
Elastohydrodynamic Lubrication of Involute Gears
,”
ASME J. Eng. Ind.
,
95
(
4
), pp.
1164
1170
. 10.1115/1.3438265
21.
Larsson
,
R.
,
1997
, “
Transient Non-Newtonian Analysis of an Involute Spur Gear
,”
Wear
,
207
(
1
), pp.
67
73
. 10.1016/S0043-1648(96)07484-4
22.
Wang
,
Y.
,
Li
,
H.
,
Tong
,
J.
, and
Yang
,
P.
,
2004
, “
Transient Thermoelastohydrodynamic Lubrication Analysis of an Involute Spur Gear
,”
Tribol. Int.
,
37
(
10
), pp.
773
782
. 10.1016/j.triboint.2004.04.005
23.
Li
,
S.
, and
Kahraman
,
A.
,
2011
, “
Influence of Dynamic Behavior on Elastohydrodynamic Lubrication of Spur Gears
,”
Proc. Inst. Mech. Eng., Part J
,
225
(
8
), pp.
740
753
. 10.1177/1350650111409517
24.
Li
,
S.
, and
Kahraman
,
A.
,
2010
, “
Prediction of Spur Gear Mechanical Power Losses Using a Transient Elastohydrodynamic Lubrication Model
,”
Tribol. Trans.
,
53
(
4
), pp.
554
563
. 10.1080/10402000903502279
25.
Vaidyanathan
,
A.
,
2009
, “
An Experimental Investigation of Helical Gear Efficiency
,”
Master’s thesis
,
The Ohio State University
,
Columbus, OH
.
26.
Ebrahimi
,
A.
, and
Akbarzadeh
,
S.
,
2013
, “
Mixed-Elastohydrodynamic Analysis of Helical Gears Using Load-Sharing Concept
,”
Proc. Inst. Mech. Eng., Part J
,
228
(
3
), pp.
320
331
. 10.1177/1350650113506571
27.
Zhu
,
C.
,
Liu
,
M.
,
Liu
,
H.
,
Xu
,
X.
, and
Liu
,
L.
,
2013
, “
A Thermal Finite Line Contact EHL Model of a Helical Gear Pair
,”
Proc. Inst. Mech. Eng., Part J
,
227
(
4
), pp.
299
309
. 10.1177/1350650112462324
28.
Yang
,
P.
, and
Yang
,
P. R.
,
2007
, “
Analysis of the Thermal Elastohydrodynamic Lubrication of Tapered Rollers in Opposite Orientation
,”
Tribol. Int.
,
40
(
10–12
), pp.
1627
1637
. 10.1016/j.triboint.2007.02.018
29.
Jamali
,
H. U.
,
Sharif
,
K. J.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
,
2014
, “
The Transient Effects of Profile Modification on Elastohydrodynamic Oil Films in Helical Gears
,”
Tribol. Trans.
,
58
(
1
), pp.
119
130
. 10.1080/10402004.2014.936990
30.
Simon
,
V.
,
1988
, “
Thermo-EHL Analysis of Lubrication of Helical Gears
,”
ASME J. Mech. Trans. Autom. Des.
,
110
(
3
), pp.
330
336
. 10.1115/1.3267466
31.
Beilicke
,
R.
,
Bobach
,
L.
, and
Bartel
,
D.
,
2016
, “
Transient Thermal Elastohydrodynamic Simulation of a DLC Coated Helical Gear Pair Considering Limiting Shear Stress Behavior of the Lubricant
,”
Tribol. Int.
,
97
, pp.
136
150
. 10.1016/j.triboint.2015.12.046
32.
Zhu
,
D.
,
Ren
,
N.
, and
Wang
,
Q. J.
,
2009
, “
Pitting Life Prediction Based on a 3D Line Contact Mixed-EHL Analysis and Subsurface von Mises Stress Calculation
,”
ASME J. Tribol.
,
131
(
4
), p.
041501
. 10.1115/1.3195040
33.
Peng
,
Y. J.
,
Zhao
,
N.
,
Zhang
,
M. Q.
,
Li
,
W.
, and
Zhou
,
R. C.
,
2018
, “
Non-Newtonian Thermal Elastohydrodynamic Simulation of Helical Gears Considering Modification and Misalignment
,”
Tribol. Int.
,
124
, pp.
46
60
. 10.1016/j.triboint.2018.03.025
34.
Jamali
,
H.
,
2015
, “
Analysis of Helical Gear Performance Under Elastohydrodynamic Lubrication
,”
Ph.D. thesis
,
Cardiff University
,
UK
.
35.
Conry
,
T. F.
, and
Seireg
,
A.
,
1973
, “
A Mathematical Programming Technique for the Evaluation of Load Distribution and Optimal Modifications for Gear Systems
,”
ASME J. Eng. for Ind.
,
95
(
4
), pp.
1115
1122
. 10.1115/1.3438259
36.
Gear Load Distribution Program—LDP
,
2007
,
Gear and Power Transmission Research Laboratory
,
The Ohio State University
,
Columbus, OH
.
37.
Johnson
,
K. L.
,
2004
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
38.
Hu
,
Y. Z.
, and
Zhu
,
D.
,
2000
, “
A Full Numerical Solution to the Mixed Lubrication in Point Contacts
,”
ASME J. Tribol.
,
122
(
1
), pp.
1
9
. 10.1115/1.555322
39.
Roelands
,
C. J. A.
,
1966
, “
Correlational Aspects of the Viscosity-Temperature-Pressure Relationship of Lubricating Oils
,”
Ph.D. thesis
,
University of Technology
,
Delft, Netherlands
.
40.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elastohydrodynamic Lubrication: The Fundamentals of Roller and Gear Lubrication
,
Pergamon Press
,
Oxford, Great Britain
.
41.
Bair
,
S.
,
2018
, “
Generalized Newtonian Viscosity Functions for Hydrodynamic Lubrication
,”
Tribol. Int.
,
117
, pp.
15
23
. 10.1016/j.triboint.2017.08.014
42.
Bair
,
S.
,
2009
, “
Rheology and High-Pressure Models for Quantitative Elastohydrodynamics
,”
Proc. Inst. Mech. Eng., Part J
,
223
(
4
), pp.
617
628
. 10.1243/13506501JET506
43.
Conry
,
T. F.
,
Wang
,
S. S.
, and
Cusano
,
C. C.
,
1987
, “
A Reynolds-Eyring Equation for Elastohydrodynamic Lubrication in Line Contacts
,”
ASME J. Tribol.
,
109
(
4
), pp.
648
654
. 10.1115/1.3261526
44.
Ehret
,
P.
,
Dowson
,
D.
, and
Taylor
,
C. M.
,
1998
, “
On Lubricant Transport Conditions in Elastohydrodynamic Conjunctions
,”
Proc. R. Soc. London, Ser. A
,
454
(
1971
), pp.
763
787
. 10.1098/rspa.1998.0185
45.
Greenwood
,
A. J.
,
2000
, “
Two-Dimensional Flow of a Non-Newtonian Lubricant
,”
Proc. Inst. Mech. Eng., Part J
,
214
(
1
), pp.
29
41
. 10.1243/1350650001542990
46.
Holt
,
C. A.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
,
1996
, “
Solution of the Non-Newtonian Elastohydrodynamic Problem for Circular Contacts Based on a Flow Continuity Method
,”
Proc. Inst. Mech. Eng., Part J
,
210
(
4
), pp.
247
258
. 10.1243/PIME_PROC_1996_210_506_02
47.
Li
,
S.
, and
Kahraman
,
A.
,
2011
, “
A Fatigue Model for Contacts Under Mixed Elastohydrodynamic Lubrication Condition
,”
Int. J. Fatigue
,
33
(
3
), pp.
427
436
. 10.1016/j.ijfatigue.2010.09.021
48.
Petry-Johnson
,
T.
,
Kahraman
,
A.
,
Anderson
,
N. E.
, and
Chase
,
D.
,
2008
, “
An Experimental Investigation of Power Losses of High-Speed Spur Gears
,”
ASME J. Mech. Des.
,
130
(
6
), p.
062601
. 10.1115/1.2898876
49.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2007
,
Rolling Bearing Analysis—Essential Concepts of Bearing Technology
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.