Abstract

Contact interactions play an important role in the tribological behavior of engineering materials. This paper develops a finite element model to investigate the contact mechanics and stress distribution of auxetic materials, i.e., materials with negative Poisson’s ratio. The model results are compared with numerical and mathematical models for isotropic auxetic polymers. The indentation of auxetic materials is analyzed for the effects of friction, plasticity and allowing separation after contact with a spherical indenter using a commercial software, abaqus. The results are discussed in terms of stress profiles, force-indentation depth curves, plasticity, friction, internal energy, compressibility, sink-in, and the pile-up of material. It is concluded that for purely elastic contact, the indentation resistance increases for auxetic materials and the inclusion of friction shifts subsurface stresses closer to the surface. However, the introduction of plasticity negates the improvement of increased indentation resistance. The pile-up of material around the indent reduces for auxetic materials which makes them more suitable for rolling/sliding contacts. The internal strain energy decreases for purely elastic contact and increases for an elastic/plastic contact.

References

1.
Kumar
,
N.
,
Khaderi
,
S. N.
, and
Tirumala Rao
,
K.
,
2020
, “
Elasto-Plastic Indentation of Auxetic and Metal Foams
,”
ASME J. Appl. Mech.
,
87
(
1
), p.
011006
. 10.1115/1.4045002
2.
Lakes
,
R.
,
1987
, “
Foam Structures With a Negative Poisson’s Ratio
,”
Science
,
235
(
4792
), pp.
1038
1040
. 10.1126/science.235.4792.1038
3.
Argatov
,
I. I.
,
Guinovart-Díaz
,
R.
, and
Sabina
,
F. J.
,
2012
, “
On Local Indentation and Impact Compliance of Isotropic Auxetic Materials From the Continuum Mechanics Viewpoint
,”
Int. J. Eng. Sci.
,
54
, pp.
42
57
. 10.1016/j.ijengsci.2012.01.010
4.
Carneiro
,
V. H.
,
Meireles
,
J.
, and
Puga
,
H.
,
2013
, “
Auxetic Materials—A Review
,”
Mater. Sci. Pol.
,
31
(
4
), pp.
561
571
. 10.2478/s13536-013-0140-6
5.
Ali
,
M. N.
,
Busfield
,
J. J. C.
, and
Rehman
,
I. U.
,
2014
, “
Auxetic Oesophageal Stents: Structure and Mechanical Properties
,”
J. Mater. Sci. Mater. Med.
,
25
(
2
), pp.
527
553
. 10.1007/s10856-013-5067-2
6.
Kuribayashi
,
K.
,
Tsuchiya
,
K.
,
You
,
Z.
,
Tomus
,
D.
,
Umemoto
,
M.
,
Ito
,
T.
, and
Sasaki
,
M.
,
2006
, “
Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil
,”
Mater. Sci. Eng. A
,
419
(
1–2
), pp.
131
137
. 10.1016/j.msea.2005.12.016
7.
Bianchi
,
M.
,
Scarpa
,
F. L.
, and
Smith
,
C. W.
,
2008
, “
Stiffness and Energy Dissipation in Polyurethane Auxetic Foams
,”
J. Mater. Sci.
,
43
(
17
), pp.
5851
5860
. 10.1007/s10853-008-2841-5
8.
Bezazi
,
A.
,
Boukharouba
,
W.
, and
Scarpa
,
F.
,
2009
, “
Mechanical Properties of Auxetic Carbon/Epoxy Composites: Static and Cyclic Fatigue Behaviour
,”
Phys. Status Solidi Basic Res.
,
246
(
9
), pp.
2102
2110
. 10.1002/pssb.200982042
9.
Donoghue
,
J. P.
,
Alderson
,
K. L.
, and
Evans
,
K. E.
,
2009
, “
The Fracture Toughness of Composite Laminates With a Negative Poisson’s Ratio
,”
Phys. Status Solidi Basic Res.
,
246
(
9
), pp.
2011
2017
. 10.1002/pssb.200982031
10.
Lakes
,
R. S.
, and
Elms
,
K.
,
1993
, “
Indentability of Conventional and Negative Poisson’s Ratio Foams
,”
J. Compos. Mater.
,
27
(
12
), pp.
1193
1202
. 10.1177/002199839302701203
11.
Alderson
,
K. L.
,
Fitzgerald
,
A.
, and
Evans
,
K. E.
,
2000
, “
The Strain Dependent Indentation Resilience of Auxetic Microporous Polyethylene
,”
J. Mater. Sci.
,
35
(
16
), pp.
4039
4047
. 10.1023/A:1004830103411
12.
Yang
,
W.
,
Li
,
Z. M.
,
Shi
,
W.
,
Xie
,
B. H.
, and
Yang
,
M. B.
,
2004
, “
On Auxetic Materials
,”
J. Mater. Sci.
,
39
(
10
), pp.
3269
3279
. 10.1023/B:JMSC.0000026928.93231.e0
13.
Photiou
,
D.
,
Prastiti
,
N.
,
Sarris
,
E.
, and
Constantinides
,
G.
,
2016
, “
On the Conical Indentation Response of Elastic Auxetic Materials: Effects of Poisson’s Ratio, Contact Friction and Cone Angle
,”
Int. J. Solids Struct.
,
81
, pp.
33
42
. 10.1016/j.ijsolstr.2015.10.020
14.
Alderson
,
K. L.
,
Simkins
,
V. R.
,
Coenen
,
V. L.
,
Davies
,
P. J.
,
Alderson
,
A.
, and
Evans
,
K. E.
,
2005
, “
How to Make Auxetic Fibre Reinforced Composites
,”
Phys. Status Solidi Basic Res.
,
242
(
3
), pp.
509
518
. 10.1002/pssb.200460371
15.
Yang
,
S.
,
Qi
,
C.
,
Wang
,
D.
,
Gao
,
R.
,
Hu
,
H.
, and
Shu
,
J.
,
2013
, “
A Comparative Study of Ballistic Resistance of Sandwich Panels With Aluminum Foam and Auxetic Honeycomb Cores
,”
Adv. Mech. Eng.
,
5
, pp.
1
15
.
16.
Prawoto
,
Y.
,
2012
, “
Seeing Auxetic Materials From the Mechanics Point of View: A Structural Review on the Negative Poisson’s Ratio
,”
Comput. Mater. Sci.
,
58
, pp.
140
153
. 10.1016/j.commatsci.2012.02.012
17.
Mir
,
M.
,
Ali
,
M. N.
,
Sami
,
J.
, and
Ansari
,
U.
,
2014
, “
Review of Mechanics and Applications of Auxetic Structures
,”
Adv. Mater. Sci. Eng.
,
2014
, pp.
1
17
. 10.1155/2014/753496
18.
Strek
,
T.
,
Maruszewski
,
B.
,
Narojczyk
,
J. W.
, and
Wojciechowski
,
K. W.
,
2008
, “
Finite Element Analysis of Auxetic Plate Deformation
,”
J. Non-Cryst. Solids
,
354
(
35–39
), pp.
4475
4480
. 10.1016/j.jnoncrysol.2008.06.087
19.
Ge
,
Z.
,
Hu
,
H.
, and
Liu
,
Y.
,
2013
, “
A Finite Element Analysis of a 3D Auxetic Textile Structure for Composite Reinforcement
,”
Smart Mater. Struct.
,
22
(
8
), p.
084005
. 10.1088/0964-1726/22/8/084005
20.
Taljat
,
B.
, and
Pharr
,
G. M.
,
2004
, “
Development of Pile-Up During Spherical Indentation of Elastic-Plastic Solids
,”
Int. J. Solids Struct.
,
41
(
14
), pp.
3891
3904
. 10.1016/j.ijsolstr.2004.02.033
21.
Taljat
,
B.
,
Zacharia
,
T.
, and
Pharr
,
G. M.
,
1998
, “
Pile-Up Behavior of Spherical Indentations in Engineering Materials
,”
Mater. Res. Soc. Symp.—Proc.
,
522
, pp.
33
38
. 10.1557/PROC-522-33
22.
Dirrenberger
,
J.
,
Forest
,
S.
, and
Jeulin
,
D.
,
2012
, “
Elastoplasticity of Auxetic Materials
,”
Comput. Mater. Sci.
,
64
, pp.
57
61
. 10.1016/j.commatsci.2012.03.036
23.
Zhang
,
J.
,
Lu
,
G.
,
Ruan
,
D.
, and
Wang
,
Z.
,
2018
, “
Tensile Behavior of an Auxetic Structure: Analytical Modeling and Finite Element Analysis
,”
Int. J. Mech. Sci.
,
136
, pp.
143
154
. 10.1016/j.ijmecsci.2017.12.029
24.
Liu
,
S.
,
Lu
,
G.
,
Chen
,
Y.
, and
Leong
,
Y. W.
,
2015
, “
Deformation of the Miura-Ori Patterned Sheet
,”
Int. J. Mech. Sci.
,
99
, pp.
130
142
. 10.1016/j.ijmecsci.2015.05.009
25.
Bianchi
,
M.
,
Scarpa
,
F.
,
Banse
,
M.
, and
Smith
,
C. W.
,
2011
, “
Novel Generation of Auxetic Open Cell Foams for Curved and Arbitrary Shapes
,”
Acta Mater.
,
59
(
2
), pp.
686
691
. 10.1016/j.actamat.2010.10.006
26.
Duncan
,
O.
,
Shepherd
,
T.
,
Moroney
,
C.
,
Foster
,
L.
,
Venkatraman
,
P. D.
,
Winwood
,
K.
,
Allen
,
T.
, and
Alderson
,
A.
,
2018
, “
Review of Auxetic Materials for Sports Applications: Expanding Options in Comfort and Protection
,”
Appl. Sci.
,
8
(
6
), p.
941
. 10.3390/app8060941
27.
Needleman
,
A.
,
Tvergaard
,
V.
, and
Van der Giessen
,
E.
,
2015
, “
Indentation of Elastically Soft and Plastically Compressible Solids
,”
Acta Mech. Sin.
,
31
(
4
), pp.
473
480
. 10.1007/s10409-015-0467-9
28.
Deshpande
,
V. S.
, and
Fleck
,
N. A.
,
2000
, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
,
48
(
6
), pp.
1253
1283
. 10.1016/S0022-5096(99)00082-4
29.
Ghaednia
,
H.
,
Wang
,
X.
,
Saha
,
S.
,
Xu
,
Y.
,
Sharma
,
A.
, and
Jackson
,
R. L.
,
2017
, “
A Review of Elastic-Plastic Contact Mechanics
,”
ASME Appl. Mech. Rev.
,
69
(
6
), p.
060804
. 10.1115/1.4038187
30.
Cheng
,
C. M.
, and
Cheng
,
Y. T.
,
1997
, “
On the Initial Unloading Slope in Indentation of Elastic-Plastic Solids by an Indenter With an Axisymmetric Smooth Profile
,”
Appl. Phys. Lett.
,
71
(
18
), pp.
2623
2625
. 10.1063/1.120159
31.
Johnson
,
K. L.
, and
Keer
,
L. M.
,
2011
, “
Contact Mechanics of Nanometer-Scale Molecular Contacts: Correlation Between Adhesion, Friction, and Hydrogen Bond Thermodynamics
,”
J. Am. Chem. Soc.
,
133
(
22
), pp.
8625
8632
. 10.1021/ja2011143
32.
Mossakovskii
,
V. I.
,
1963
, “
Compression of Elastic Bodies Under Conditions of Adhesion (Axisymmetric Case)
,”
J. Appl. Math. Mech.
,
27
(
3
), pp.
630
643
. 10.1016/0021-8928(63)90150-3
33.
Ramírez
,
M.
,
Nava-Gómez
,
G. G.
,
Sabina
,
F. J.
,
Camacho-Montes
,
H.
,
Guinovart-Díaz
,
R.
,
Rodríguez-Ramos
,
R.
, and
Bravo-Castillero
,
J.
,
2012
, “
Enhancement of Young’s Moduli and Auxetic Windows in Laminates With Isotropic Constituents
,”
Int. J. Eng. Sci.
,
58
, pp.
95
114
. 10.1016/j.ijengsci.2012.03.029
34.
Argatov
,
I. I.
,
2006
, “
The Solution of the Hertz Axisymmetric Contact Problem
,”
J. Appl. Math. Mech.
,
70
(
4
), pp.
621
635
. 10.1016/j.jappmathmech.2006.09.013
35.
Lakes
,
R. S.
,
1993
, “
Design Considerations for Negative Poisson’s Ratio Materials
,”
ASME J. Mech. Des.
,
115
(
4
), pp.
696
700
. 10.1115/1.2919256
36.
Borodich
,
F. M.
, and
Keer
,
L. M.
,
2004
, “
Contact Problems and Depth-Sensing Nanoindentation for Frictionless and Frictional Boundary Conditions
,”
Int. J. Solids Struct.
,
41
(
9–10
), pp.
2479
2499
. 10.1016/j.ijsolstr.2003.12.012
37.
Borodich
,
F. M.
, and
Keer
,
L. M.
,
2004
, “
Evaluation of Elastic Modulus of Materials by Adhesive (No-Slip) Nano-Indentation
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
460
(
2042
), pp.
507
514
. 10.1098/rspa.2003.1224
38.
Huber
,
M. T.
,
1904
, “
Zur Theorie Der Berührung Fester Elastischer Körper
,”
Ann. Phys.
,
319
(
6
), pp.
153
163
. 10.1002/andp.19043190611
39.
Struchtrup
,
H.
,
2014
, “The First Law of Thermodynamics,”
Thermodynamics and Energy Conversion
,
Springer
,
Berlin/Heidelberg
, pp.
33
53
.
40.
SIMULIA
,
2011
,
ABAQUS Analysis User’s Manual (version 6.11)
,
Dassault Systèmes Simulia Corp
,
Providence, RI
. http://130.149.89.49:2080/v6.11/index.html
41.
Stepanov
,
I. A.
,
2013
, “
The First Law of Thermodynamics for Auxetic Materials
,”
J. Non-Cryst. Solids
,
367
(
1
), pp.
51
52
. 10.1016/j.jnoncrysol.2013.02.017
42.
Yan
,
W.
, and
Pun
,
C. L.
,
2010
, “
Spherical Indentation of Metallic Foams
,”
Mater. Sci. Eng. A
,
527
(
13–14
), pp.
3166
3175
. 10.1016/j.msea.2010.01.068
43.
Baroutaji
,
A.
,
Arjunan
,
A.
,
Niknejad
,
A.
,
Tran
,
T.
, and
Olabi
,
A.-G.
,
2019
, “
Application of Cellular Material in Crashworthiness Applications: An Overview
,”
Reference Module in Materials Science and Materials Engineering
. 10.1016/B978-0-12-803581-8.09268-7
44.
Wang
,
J. G.
,
Sun
,
W.
, and
Anand
,
S.
,
2008
, “
A Microstructural Analysis for Crushable Deformation of Foam Materials
,”
Comput. Mater. Sci.
,
44
(
1
), pp.
195
200
. 10.1016/j.commatsci.2008.01.014
45.
Ineos Olefins & Polymers USA
,
2010
, “
Typical Engineering Properties of Polypropylene
,” Ineos Olefin. Polym. USA, p. 2, https://www.ineos.com/globalassets/ineos-group/businesses/ineos-olefins-and-polymers-usa/products/technical-information--patents/ineos-engineering-properties-of-p.pdf, Accessed October 5, 2020.
46.
Ahmed
,
R.
,
2002
, “Rolling Contact Fatigue,”
ASM Handbook Volume 11: Failure Analysis and Prevention
,
W. T.
Becker
, and
R. J.
Shipley
, eds.,
ASM International
,
OH
, pp.
941
956
.
47.
SIMULIA
,
2013
, “Controlling Result Averaging,”
ABAQUS Analysis User’s Manual (version 6.13)
,
Dassault Systèmes Simulia Corp
,
Providence, RI
. http://130.149.89.49:2080/v6.13/index.html
48.
Ahmed
,
R.
, and
Sutcliffe
,
M. P. F.
,
2001
, “
An Experimental Investigation of Surface Pit Evolution During Cold-Rolling or Drawing of Stainless Steel Strip
,”
ASME J. Tribol.
,
123
(
1
), pp.
1
7
. 10.1115/1.1327580
49.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
. 10.1557/JMR.1992.1564
You do not currently have access to this content.