Abstract

Data-driven analysis and machine learning (ML) algorithms can offer novel insights into tribological phenomena by establishing correlations between material and tribological properties. We developed ML algorithms using tribological data available in the literature for predicting the coefficient of friction (COF) and wear-rate of self-lubricating aluminum graphite (Al/Gr) composites. We collected data on effects of material variables (graphite content, hardness, ductility, yield strength, silicon carbide content, and tensile strength), processing procedure, heat treatment and tribological test variables (normal load, sliding speed, and sliding distance) on tribological properties and established two-parameter relationships. These data are analyzed using several ML algorithms: artificial neural network (ANN), K nearest neighbor (KNN), support vector machine (SVM), gradient boosting machine (GBM), and random forest (RF). The trained ML models can predict the tribological behavior from material variables and test conditions, beyond what is possible from two-parameter correlations. GBM outperformed other ML algorithms in predicting friction behavior, while RF had the best prediction of the wear behavior. ML analysis identified graphite content and hardness and as the most significant variables in predicting the COF, while graphite content and sliding speed were the most dominant variables for wear-rates.

References

1.
Menezes
,
P. L.
,
Nosonovsky
,
M.
,
Ingole
,
S. P.
,
Kailas
,
S. V.
, and
Lovell
,
M. R.
,
2013
,
Tribology for Scientists and Engineers
,
Springer
,
New York
.
2.
Kordijazi
,
A.
,
Roshan
,
H. M.
,
Dhingra
,
A.
,
Povolo
,
M.
,
Rohatgi
,
P. K.
, and
Nosonovsky
,
M.
,
2020
, “
Machine-Learning Methods to Predict the Wetting Properties of Iron-Based Composites
,”
Surf. Innovations
,
9
(
2–3
), pp.
111
119
.
3.
Macke
,
A.
,
Schultz
,
B. F.
, and
Rohatgi
,
P.
,
2012
, “
Metal Matrix Composites
,”
Adv. Mater. Processes
,
170
(
3
), pp.
19
23
.
4.
Liu
,
Y.
,
Asthana
,
R.
, and
Rohatgi
,
P.
,
1991
, “
A Map for Wear Mechanisms in Aluminium Alloys
,”
J. Mater. Sci.
,
26
(
1
), pp.
99
102
.
5.
Zhang
,
J.
, and
Alpas
,
A. T.
,
1997
, “
Transition Between Mild and Severe Wear in Aluminium Alloys
,”
Acta Mater.
,
45
(
2
), pp.
513
528
.
6.
Umanath
,
K. P. S. S. K.
,
Palanikumar
,
K.
, and
Selvamani
,
S. T.
,
2013
, “
Analysis of Dry Sliding Wear Behaviour of Al6061/SiC/Al2O3 Hybrid Metal Matrix Composites
,”
Composites, Part B
,
53
, pp.
159
168
.
7.
Hassan
,
A. M.
,
Alrashdan
,
A.
,
Hayajneh
,
M. T.
, and
Mayyas
,
A. T.
,
2009
, “
Wear Behavior of Al–Mg–Cu–Based Composites Containing SiC Particles
,”
Tribol. Int.
,
42
(
8
), pp.
1230
1238
.
8.
Ames
,
W.
, and
Alpas
,
A. T.
,
1995
, “
Wear Mechanisms in Hybrid Composites of Graphite-20 Pct SiC in A356 Aluminum Alloy (Al-7 Pct Si-0.3 Pct Mg)
,”
Metall. Mater. Trans. A
,
26
(
1
), pp.
85
98
.
9.
Bragg
,
W. H.
,
1928
,
An Introduction to Crystal Analysis
,
G. Bell and Sons, Limited
,
London
.
10.
Omrani
,
E.
,
Moghadam
,
A. D.
,
Menezes
,
P. L.
, and
Rohatgi
,
P. K.
,
2016
, “
Influences of Graphite Reinforcement on the Tribological Properties of Self-Lubricating Aluminum Matrix Composites for Green Tribology, Sustainability, and Energy Efficiency—A Review
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1–4
), pp.
325
346
.
11.
Rohatgi
,
P. K.
,
Ray
,
S.
, and
Liu
,
Y.
,
1992
, “
Tribological Properties of Metal Matrix-Graphite Particle Composites
,”
Int. Mater. Rev.
,
37
(
1
), pp.
129
152
.
12.
Rohatgi
,
P. K.
,
Liu
,
Y.
,
Yin
,
M.
, and
Barr
,
T. L.
,
1990
, “
A Surface-Analytical Study of Tribodeformed Aluminum Alloy 319-10 vol% Graphite Particle Composite
,”
Mater. Sci. Eng. A
,
123
(
2
), pp.
213
218
.
13.
Liu
,
Y. B.
,
Lim
,
S. C.
,
Ray
,
S.
, and
Rohatgi
,
P. K.
,
1992
, “
Friction and Wear of Aluminium-Graphite Composites: The Smearing Process of Graphite During Sliding
,”
Wear
,
159
(
2
), pp.
201
205
.
14.
Chu
,
H. S.
,
Liu
,
K. S.
, and
Yeh
,
J. W.
,
2000
, “
An In Situ Composite of Al (Graphite, Al4C3) Produced by Reciprocating Extrusion
,”
Mater. Sci. Eng. A
,
277
(
1–2
), pp.
25
32
.
15.
Gibson
,
P. R.
,
Clegg
,
A. J.
, and
Das
,
A. A.
,
1984
, “
Wear of Cast Al-Si Alloys Containing Graphite
,”
Wear
,
95
(
2
), pp.
193
198
.
16.
Biswas
,
S. K.
, and
Bai
,
B. P.
,
1981
, “
Dry Wear of Al-Graphite Particle Composites
,”
Wear
,
68
(
3
), pp.
347
358
.
17.
Sharma
,
P.
,
Paliwal
,
K.
,
Garg
,
R. K.
,
Sharma
,
S.
, and
Khanduja
,
D.
,
2017
, “
A Study on Wear Behaviour of Al/6101/Graphite Composites
,”
J. Asian Ceram. Soc.
,
5
(
1
), pp.
42
48
.
18.
Deaquino-Lara
,
R.
,
Soltani
,
N.
,
Bahrami
,
A.
,
Gutiérrez-Castañeda
,
E.
,
García-Sánchez
,
E.
, and
Hernandez-Rodríguez
,
M. A. L.
,
2015
, “
Tribological Characterization of Al7075–Graphite Composites Fabricated by Mechanical Alloying and Hot Extrusion
,”
Mater. Des.
,
67
, pp.
224
231
.
19.
Guo
,
M. T.
, and
Tsao
,
C. Y.
,
2000
, “
Tribological Behavior of Self-Lubricating Aluminium/SiC/Graphite Hybrid Composites Synthesized by the Semi-Solid Powder-Densification Method
,”
Compos. Sci. Technol.
,
60
(
1
), pp.
65
74
.
20.
Rohatgi
,
P. K.
, and
Pai
,
B. C.
,
1980
, “
Seizure Resistance of Cast Aluminium Alloys Containing Dispersed Graphite Particles of Various Sizes
,”
Wear
,
59
(
2
), pp.
323
332
.
21.
Guo
,
M. T.
, and
Tsao
,
C. Y.
,
2002
, “
Tribological Behavior of Aluminum/SiC/Nickel-Coated Graphite Hybrid Composites
,”
Mater. Sci. Eng. A
,
333
(
1–2
), pp.
134
145
.
22.
Zhang
,
J.
,
Perez
,
R. J.
, and
Lavernia
,
E. J.
,
1994
, “
Effect of SiC and Graphite Particulates on the Damping Behavior of Metal Matrix Composites
,”
Acta Metall. Mater.
,
42
(
2
), pp.
395
409
.
23.
Rohatgi
,
P. K.
,
Asthana
,
R.
, and
Das
,
S.
,
1986
, “
Solidification, Structures, and Properties of Cast Metal-Ceramic Particle Composites
,”
Int. Met. Rev.
,
31
(
1
), pp.
115
139
.
24.
Akhlaghi
,
F.
, and
Zare-Bidaki
,
A.
,
2009
, “
Influence of Graphite Content on the Dry Sliding and Oil Impregnated Sliding Wear Behavior of Al 2024–Graphite Composites Produced by In Situ Powder Metallurgy Method
,”
Wear
,
266
(
1–2
), pp.
37
45
.
25.
Singh
,
J.
,
2016
, “
Fabrication Characteristics and Tribological Behavior of Al/SiC/Gr Hybrid Aluminum Matrix Composites: A Review
,”
Friction
,
4
(
3
), pp.
191
207
.
26.
Mahdavi
,
S.
, and
Akhlaghi
,
F.
,
2011
, “
Effect of the Graphite Content on the Tribological Behavior of Al/Gr and Al/30SiC/Gr Composites Processed by In Situ Powder Metallurgy (IPM) Method
,”
Tribol. Lett.
,
44
(
1
), pp.
1
12
.
27.
Baradeswaran
,
A.
, and
Perumal
,
A. E.
,
2014
, “
Wear and Mechanical Characteristics of Al 7075/Graphite Composites
,”
Compos. Part B
,
56
, pp.
472
476
.
28.
Moghadam
,
A. D.
,
Omrani
,
E.
,
Menezes
,
P. L.
, and
Rohatgi
,
P. K.
,
2015
, “
Mechanical and Tribological Properties of Self-Lubricating Metal Matrix Nanocomposites Reinforced by Carbon Nanotubes (CNTs) and Graphene—A Review
,”
Compos. Part B
,
77
, pp.
402
420
.
29.
Omrani
,
E.
,
Moghadam
,
A. D.
,
Menezes
,
P. L.
, and
Rohatgi
,
P. K.
,
2016
, “New Emerging Self-Lubricating Metal Matrix Composites for Tribological Applications,”
Ecotribology
,
J. P.
Davim
, ed.,
Springer
,
Cham
, pp.
63
103
.
30.
Schmidt
,
J.
,
Marques
,
M. R.
,
Botti
,
S.
, and
Marques
,
M. A.
,
2019
, “
Recent Advances and Applications of Machine Learning in Solid-State Materials Science
,”
Comput. Mater.
,
5
(
1
), pp.
1
36
.
31.
Graser
,
J.
,
Kauwe
,
S. K.
, and
Sparks
,
T. D.
,
2018
, “
Machine Learning and Energy Minimization Approaches for Crystal Structure Predictions: A Review and New Horizons
,”
Chem. Mater.
,
30
(
11
), pp.
3601
3612
.
32.
Kim
,
C.
,
Pilania
,
G.
, and
Ramprasad
,
R.
,
2016
, “
Machine Learning Assisted Predictions of Intrinsic Dielectric Breakdown Strength of ABX3 Perovskites
,”
J. Phys. Chem. C
,
120
(
27
), pp.
14575
14580
.
33.
Lanka
,
S.
,
Alexandrova
,
E.
,
Kozhukhova
,
M.
,
Hasan
,
M. S.
,
Nosonovsky
,
M.
, and
Sobolev
,
K.
,
2019
, “
Tribological and Wetting Properties of TiO2 Based Hydrophobic Coatings for Ceramics
,”
ASME. J. Tribol.
,
141
(
10
), p.
101301
.
34.
Bowden
,
F. P.
, and
Tabor
,
D.
,
1950
,
Friction Lubrication of Solids, Part 1
,
Clarendon
,
London, UK
.
35.
Popov
,
V. L.
,
2010
,
Contact Mechanics and Friction
,
Springer
,
Berlin/Heidelberg
.
36.
Hasan
,
M. S.
, and
Nosonovsky
,
M.
,
2020
, “
Lotus Effect and Friction: Does Nonsticky Mean Slippery?
,”
Biomimetics
,
5
(
2
), p.
28
.
37.
Wilson
,
S.
, and
Alpas
,
A. T.
,
1997
, “
Wear Mechanism Maps for Metal Matrix Composites
,”
Wear
,
212
(
1
), pp.
41
49
.
38.
Basavarajappa
,
S.
,
Chandramohan
,
G.
,
Mukund
,
K.
,
Ashwin
,
M.
, and
Prabu
,
M.
,
2006
, “
Dry Sliding Wear Behavior of Al 2219/SiCp-Gr Hybrid Metal Matrix Composites
,”
J. Mater. Eng. Perform.
,
15
(
6
), pp.
668
674
.
39.
Ravindran
,
P.
,
Manisekar
,
K.
,
Narayanasamy
,
R.
, and
Narayanasamy
,
P.
,
2013
, “
Tribological Behaviour of Powder Metallurgy-Processed Aluminium Hybrid Composites With the Addition of Graphite Solid Lubricant
,”
Ceram. Int.
,
39
(
2
), pp.
1169
1182
.
40.
Baradeswaran
,
A.
, and
Elayaperumal
,
A.
,
2011
, “
Effect of Graphite Content on Tribological Behaviour of Aluminium Alloy-Graphite Composite
,”
Eur. J. Sci. Res.
,
53
(
2
), pp.
163
170
.
41.
Jha
,
A. K.
,
Prasad
,
S. V.
, and
Upadhyaya
,
G. S.
,
1989
, “
Dry Sliding Wear of Sintered 6061 Aluminium Alloy—Graphite Particle Composites
,”
Tribol. Int.
,
22
(
5
), pp.
321
327
.
42.
Moghadam
,
A. D.
,
Schultz
,
B. F.
,
Ferguson
,
J. B.
,
Omrani
,
E.
,
Rohatgi
,
P. K.
, and
Gupta
,
N.
,
2014
, “
Functional Metal Matrix Composites: Self-Lubricating, Self-Healing, and Nanocomposites—An Outlook
,”
JOM
,
66
(
6
), pp.
872
881
.
43.
Molina
,
J. M.
,
Rhême
,
M.
,
Carron
,
J.
, and
Weber
,
L.
,
2008
, “
Thermal Conductivity of Aluminum Matrix Composites Reinforced With Mixtures of Diamond and SiC Particles
,”
Scr. Mater.
,
58
(
5
), pp.
393
396
.
44.
Vencl
,
A.
,
Bobić
,
I.
, and
Mišković
,
Z.
,
2008
, “
Effect of Thixocasting and Heat Treatment on the Tribological Properties of Hypoeutectic Al–Si Alloy
,”
Wear
,
264
(
7–8
), pp.
616
623
.
45.
Yang
,
J. B.
,
Lin
,
C. B.
,
Wang
,
T. C.
, and
Chu
,
H. Y.
,
2004
, “
The Tribological Characteristics of A356. 2Al Alloy/Gr (p) Composites
,”
Wear
,
257
(
9–10
), pp.
941
952
.
46.
Lin
,
C. B.
,
Wang
,
T. C.
,
Chang
,
Z. C.
, and
Chu
,
H. Y.
,
2013
, “
Tribological Analysis of Copper-Coated Graphite Particle-Reinforced A359 Al/5 wt% SiC Composites
,”
J. Mater. Eng. Perform.
,
22
(
1
), pp.
94
103
.
47.
Ravindran
,
P.
,
Manisekar
,
K.
,
Rathika
,
P.
, and
Narayanasamy
,
P.
,
2013
, “
Tribological Properties of Powder Metallurgy–Processed Aluminium Self Lubricating Hybrid Composites With SiC Additions
,”
Mater. Des.
,
45
, pp.
561
570
.
48.
George
,
R.
,
Kashyap
,
K. T.
,
Rahul
,
R.
, and
Yamdagni
,
S.
,
2005
, “
Strengthening in Carbon Nanotube/Aluminium (CNT/Al) Composites
,”
Scr. Mater.
,
53
(
10
), pp.
1159
1163
.
49.
Vencl
,
A.
,
Vučetić
,
F.
,
Bobić
,
B.
,
Pitel
,
J.
, and
Bobić
,
I.
,
2019
, “
Tribological Characterisation in Dry Sliding Conditions of Compocasted Hybrid A356/SiC p/Gr p Composites With Graphite Macroparticles
,”
Int. J. Adv. Manuf. Technol.
,
100
(
9–12
), pp.
2135
2146
.
50.
Gore
,
G. J.
, and
Gates
,
J. D.
,
1997
, “
Effect of Hardness on Three Very Different Forms of Wear
,”
Wear
,
203
, pp.
544
563
.
51.
Gopi
,
V.
,
Sellamuthu
,
R.
, and
Arul
,
S.
,
2014
, “
Measurement of Hardness, Wear Rate and Coefficient of Friction of Surface Refined Al-Cu Alloy
,”
Procedia Eng.
,
97
, pp.
1355
1360
.
52.
Archard
,
J. F.
, and
Hirst
,
W.
,
1956
, “
The Wear of Metals Under Unlubricated Conditions
,”
Proc. R. Soc. London, A
,
236
(
1206
), pp.
397
410
.
53.
Li
,
S.
,
Shao
,
M.
,
Duan
,
C.
,
Yan
,
Y.
,
Wang
,
Q.
,
Wang
,
T.
, and
Zhang
,
X.
,
2019
, “
Tribological Behavior Prediction of Friction Materials for Ultrasonic Motors Using Monte Carlo-Based Artificial Neural Network
,”
J. Appl. Polym. Sci.
,
136
(
10
), p.
47157
.
54.
Gyurova
,
L. A.
, and
Friedrich
,
K.
,
2011
, “
Artificial Neural Networks for Predicting Sliding Friction and Wear Properties of Polyphenylene Sulfide Composites
,”
Tribol. Int.
,
44
(
5
), pp.
603
609
.
You do not currently have access to this content.