Abstract

Structurally dissimilar clay type silicate (tubular halloysite, platy montmorillonite, and acicular wollastonite) reinforced compression molded composites were fabricated with and without MgO. The thermo-mechanical and frictional performances of natural silicate-based friction materials were systematically evaluated with respect to the silicate and silicate-MgO free composites. The morphology and hardness of the natural silicates dominated the mechanical and tribological responses of the friction materials. The worn surface morphology revealed the influence of natural silicate on braking dynamics as evident from performance sensitivity analysis, braking load, sliding speed, and temperature. The nature of sliding induced tribo-layers was ascertained from elemental mapping by EDX and Raman spectroscopy indicating the friction composition of tribo-layer to be influencing performance sensitivity. Under the variable operating conditions, halloysite-based friction materials showed excellent wear resistance, and wollastonite-based friction composites with MgO enhanced the friction coefficient (∼0.43–0.61) while exhibiting minimum load-speed sensitivity. The gradient descent learning algorithm-based artificial neural network (GD-ANN) with optimally tuned network architecture predicted (R2 ∼ 97%) both the tribological performance attributes (coefficient of friction and specific wear-rate) of the natural silicate-filled friction composites more accurately as compared to the conventional regression analysis.

References

1.
Xiao
,
X.
,
Yin
,
Y.
,
Bao
,
J.
,
Lu
,
L.
, and
Feng
,
X.
,
2016
, “
Review on the Friction and Wear of Brake Materials
,”
Adv. Mech. Eng.
,
8
(
5
), p
168781401664730
.
2.
Kumar
,
M.
, and
Bijwe
,
J.
,
2013
, “
Optimized Selection of Metallic Fillers for Best Combination of Performance Properties of Friction Materials: A Comprehensive Study
,”
Wear
,
303
(
1
), pp.
569
583
.
3.
Bijwe
,
J.
,
Nidhi
,
Majumdar
,
N.
, and
Satapathy
,
B. K.
,
2005
, “
Influence of Modified Phenolic Resins on the Fade and Recovery Behavior of Friction Materials
,”
Wear
,
259
(
7
), pp.
1068
1078
.
4.
Perricone
,
G.
,
Matějka
,
V.
,
Alemani
,
M.
,
Valota
,
G.
,
Bonfanti
,
A.
,
Ciotti
,
A.
,
Olofsson
,
U.
, et al
,
2018
, “
A Concept for Reducing PM10 Emissions for Car Brakes by 50%
,”
Wear
,
396–397
(2), pp.
135
145
.
5.
Saha
,
D.
, and
Satapathy
,
B. K.
,
2022
, “
Combinatorial Effects of Clay-Type Silicate and MgO on Friction Braking Performance of Hybrid Phenolic Composites
,”
ASME J. Tribol.
,
144
(
10
), p.
101201
.
6.
Satapathy
,
B. K.
,
Patnaik
,
A.
,
Dadkar
,
N.
,
Kolluri
,
D. K.
, and
Tomar
,
B. S.
,
2011
, “
Influence of Vermiculite on Performance of Flyash-Based Fibre-Reinforced Hybrid Composites as Friction Materials
,”
Mater. Des.
,
32
(
8
), pp.
4354
4361
.
7.
Singh
,
T.
,
Patnaik
,
A.
,
Satapathy
,
B. K.
,
Kumar
,
M.
, and
Tomar
,
B. S.
,
2013
, “
Effect of Nanoclay Reinforcement on the Friction Braking Performance of Hybrid Phenolic Friction Composites
,”
J. Mater. Eng. Perform.
,
22
(
3
), pp.
796
805
.
8.
Singh
,
T. E. J.
,
Patnaik
,
A.
, and
Satapathy
,
B. K.
,
2013
, “
Friction Braking Performance of Nanofilled Hybrid Fiber Reinforced Phenolic Composites: Influence of Nanoclay and Carbon Nanotubes
,”
Nano
,
08
(
03
), p.
1350025
.
9.
Sathyamoorthy
,
G.
,
Vijay
,
R.
, and
Singaravelu
,
D. L.
,
2022
, “
A Comparative Study on Tribological Characterisations of Different Abrasives Based Non-Asbestos Brake Friction Composites
,”
Mater. Today: Proc.
,
56
(
1
), pp.
661
668
.
10.
Saha
,
D.
, and
Satapathy
,
B. K.
,
2021
, “
Influence of Various Types of Clays on Velocity Dependence of Friction Composites
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
235
(
11
), pp.
2415
2431
.
11.
Dědková
,
K.
,
Morbach
,
M.
,
Výravský
,
J.
,
Kutláková
,
K. M.
,
Čabanová
,
K.
,
Vaculík
,
M.
, and
Kukutschová
,
J.
,
2018
, “
Nanocomposite Kaolin/TiO2 as a Possible Functional Filler in Automotive Brake Pads
,”
J. Nanomater.
,
2018
(
11
), p.
9780894
.
12.
Mahale
,
V.
,
Bijwe
,
J.
, and
Sinha
,
S.
,
2017
, “
Influence of Nano-Potassium Titanate Particles on the Performance of NAO Brake-Pads
,”
Wear
,
376–377
, pp.
727
737
.
13.
Dadkar
,
N.
,
Tomar
,
B. S.
,
Satapathy
,
B. K.
, and
Patnaik
,
A.
,
2010
, “
Performance Assessment of Hybrid Composite Friction Materials Based on Flyash–Rock Fibre Combination
,”
Mater. Des.
,
31
(
2
), pp.
723
731
.
14.
Day
,
A. J.
,
1988
, “
An Analysis of Speed, Temperature, and Performance Characteristics of Automotive Drum Brakes
,”
ASME J. Tribol.
,
110
(
2
), pp.
298
303
.
15.
Eriksson
,
M.
,
Bergman
,
F.
, and
Jacobson
,
S.
,
2002
, “
On the Nature of Tribological Contact in Automotive Brakes
,”
Wear
,
252
(
1
), pp.
26
36
.
16.
Saha
,
D.
, and
Satapathy
,
B. K.
,
2019
, “
Friction Hysteresis and Subsequent Wear Mechanism of Clay-Based Phenolic Composites Under Cyclic Load
,”
Mater. Today: Proc.
,
19
(
2
), pp.
196
204
.
17.
Patnaik
,
A.
,
Kumar
,
M.
,
Satapathy
,
B. K.
, and
Tomar
,
B. S.
,
2010
, “
Performance Sensitivity of Hybrid Phenolic Composites in Friction Braking: Effect of Ceramic and Aramid Fibre Combination
,”
Wear
,
269
(
11
), pp.
891
899
.
18.
Parikh
,
H. H.
, and
Gohil
,
P. P.
,
2017
, “
Experimental Investigation and Prediction of Wear Behavior of Cotton Fiber Polyester Composites
,”
Friction
,
5
(
2
), pp.
183
193
.
19.
Satapathy
,
B. K.
,
Bijwe
,
J.
, and
Kolluri
,
D. K.
,
2005
, “
Assessment of Fiber Contribution to Friction Material Performance Using Grey Relational Analysis (GRA)
,”
J. Compos. Mater.
,
40
(
6
), pp.
483
501
.
20.
Satapathy
,
B. K.
, and
Bijwe
,
J.
,
2005
, “
Influence of Operating Parameters on the Performance of Friction Composites Based on Combinations of Rock Fibers and Organic Fibers
,”
J. Reinf. Plast. Compos.
,
24
(
6
), pp.
579
595
.
21.
Gopal
,
P.
,
Dharani
,
L. R.
, and
Blum
,
F. D.
,
1995
, “
Load, Speed and Temperature Sensitivities of a Carbon-Fiber-Reinforced Phenolic Friction Material
,”
Wear
,
181–183
(
3
), pp.
913
921
.
22.
Argatov
,
I.
,
2019
, “
Artificial Neural Networks (ANNs) as a Novel Modeling Technique in Tribology
,”
Front. Mech. Eng.
,
5
(
5
), pp.
30
39
.
23.
Rosenkranz
,
A.
,
Marian
,
M.
,
Profito
,
F. J.
,
Aragon
,
N.
, and
Shah
,
R.
,
2021
, “
The Use of Artificial Intelligence in Tribology—A Perspective
,”
Lubricants
,
9
(
1
), pp.
1
11
.
24.
Marian
,
M.
, and
Tremmel
,
S.
,
2021
, “
Current Trends and Applications of Machine Learning in Tribology—A Review
,”
Lubricants
,
9
(
9
), p.
86
.
25.
Marian
,
M.
,
Mursak
,
J.
,
Bartz
,
M.
,
Profito
,
F. J.
,
Rosenkranz
,
A.
, and
Wartzack
,
S.
,
2022
, “
Predicting EHL Film Thickness Parameters by Machine Learning Approaches
,”
Friction
,
6
(
6
), pp.
1
22
.
26.
Zhang
,
Z.
,
Friedrich
,
K.
, and
Velten
,
K.
,
2002
, “
Prediction on Tribological Properties of Short Fibre Composites Using Artificial Neural Networks
,”
Wear
,
252
(
7
), pp.
668
675
.
27.
Xiao
,
G.
, and
Zhu
,
Z.
,
2010
, “
Friction Materials Development by Using DOE/RSM and Artificial Neural Network
,”
Tribol. Int.
,
43
(
1
), pp.
218
227
.
28.
Aleksendrić
,
D.
,
Barton
,
D. C.
, and
Vasić
,
B.
,
2010
, “
Prediction of Brake Friction Materials Recovery Performance Using Artificial Neural Networks
,”
Tribol. Int.
,
43
(
11
), pp.
2092
2099
.
29.
Saha
,
D.
, and
Satapathy
,
B. K.
,
2022
, “
Tuning of Friction Oscillation Amplitude in Halloysite, Montmorillonite, and Wollastonite Filled Friction Composites: Load, Speed, and Temperature Sensitivity
,”
ASME J. Tribol.
,
144
(
6
), p.
061706
.
30.
Shin
,
M. W.
,
Kim
,
J. W.
,
Joo
,
B. S.
, and
Jang
,
H.
,
2015
, “
Wear and Friction-Induced Vibration of Brake Friction Materials With Different Weight Average Molar Mass Phenolic Resins
,”
Tribol. Lett.
,
58
(
1
), pp.
1
8
.
31.
Herrera-Alonso
,
J. M.
,
Marand
,
E.
,
Little
,
J. C.
, and
Cox
,
S. S.
,
2009
, “
Transport Properties in Polyurethane/Clay Nanocomposites as Barrier Materials: Effect of Processing Conditions
,”
J. Membr. Sci.
,
337
(
1
), pp.
208
214
.
32.
Ahmad
,
A.
,
Cotsovos
,
D. M.
, and
Lagaros
,
N. D.
,
2020
, “
Framework for the Development of Artificial Neural Networks for Predicting the Load Carrying Capacity of RC Members
,”
SN Appl. Sci.
,
2
(
4
), p.
545
.
33.
Kriegeskorte
,
N.
, and
Golan
,
T.
,
2019
, “
Neural Network Models and Deep Learning
,”
Curr. Biol.
,
29
(
7
), pp.
R231
R236
.
34.
Shahrokhi
,
Z.
,
Sohrabi
,
M. R.
, and
Nik
,
S. M.
,
2020
, “
The Application of Artificial Intelligence System and Regression Methods Based on the Spectrophotometric Method for Fast Simultaneous Determination of Naphazoline and Antazoline in Ophthalmic Formulation
,”
Optik
,
203
(
2
), pp.
164010
164026
.
35.
Maiti
,
S. N.
, and
Lopez
,
B. H.
,
1992
, “
Tensile Properties of Polypropylene/Kaolin Composites
,”
J. Appl. Polym. Sci.
,
44
(
2
), pp.
353
360
.
36.
Jaggi
,
H. S.
,
Tiwari
,
A.
,
Satapathy
,
B. K.
, and
Patnaik
,
A.
,
2013
, “
Dynamic Mechanical Response and Fade–Recovery Performance of Friction Composites: Effect of Flyash and Resin Combination
,”
J. Reinf. Plast. Compos.
,
32
(
11
), pp.
835
845
.
37.
Rothon
,
R.
, and
DeArmitt
,
C.
,
2017
, “Chapter 8—Fillers (Including Fiber Reinforcements),”
Brydson’s Plastics Materials
, 8th ed.,
M.
Gilbert
, ed.,
Butterworth-Heinemann
,
Oxford, UK
, pp.
169
204
.
38.
Mendelovici
,
E.
,
Villalba
,
R.
, and
Sagarzazu
,
A.
,
1983
, “
Selective Destruction and Differentiation of Clay Minerals From Natural Diaspore Admixture by Mortar Grinding
,”
Int. J. Miner. Process.
,
11
(
2
), pp.
131
138
.
39.
Shepelev
,
O.
,
Kenig
,
S.
, and
Dodiuk
,
H.
,
2014
, “16—Nanotechnology Based Thermosets,”
Handbook of Thermoset Plastics
, 3rd ed.,
H.
Dodiuk
, and
S. H.
Goodman
, eds.,
William Andrew Publishing
,
Boston
, pp.
623
695
.
40.
Satapathy
,
B. K.
, and
Bijwe
,
J.
,
2002
, “
Analysis of Simultaneous Influence of Operating Variables on Abrasive Wear of Phenolic Composites
,”
Wear
,
253
(
7
), pp.
787
794
.
41.
Mahmud
,
D. N. F.
,
Abdollah
,
M. F. B.
,
Masripan
,
N. A. B.
,
Tamaldin
,
N.
, and
Amiruddin
,
H.
,
2018
, “
Influence of Contact Pressure and Sliding Speed Dependence on the Tribological Characteristics of an Activated Carbon-Epoxy Composite Derived From Palm Kernel Under Dry Sliding Conditions
,”
Friction
,
7
(
3
), pp.
227
236
.
42.
Eriksson
,
M.
, and
Jacobson
,
S.
,
2000
, “
Tribological Surfaces of Organic Brake Pads
,”
Tribol. Int.
,
33
(
12
), pp.
817
827
.
43.
Kumar
,
M.
,
Satapathy
,
B. K.
,
Patnaik
,
A.
,
Kolluri
,
D. K.
, and
Tomar
,
B. S.
,
2011
, “
Hybrid Composite Friction Materials Reinforced with Combination of Potassium Titanate Whiskers and Aramid Fibre: Assessment of Fade and Recovery Performance
,”
Tribol. Int.
,
44
(
4
), pp.
359
367
.
44.
Rajan
,
R.
,
Tyagi
,
Y. K.
, and
Singh
,
S.
,
2022
, “
Waste and Natural Fiber Based Automotive Brake Composite Materials: Influence of Slag and Coir on Tribological Performance
,”
Polym. Compos.
,
43
(
3
), pp.
1508
1517
.
45.
Liu
,
T.
, and
Rhee
,
S. K.
,
1976
, “
High Temperature Wear of Asbestos-Reinforced Friction Materials
,”
Wear
,
37
(
2
), pp.
291
297
.
46.
Rhee
,
S. K.
,
1974
, “
Wear Mechanisms for Asbestos-Reinforced Automotive Friction Materials
,”
Wear
,
29
(
3
), pp.
391
393
.
47.
Ostermeyer
,
G. P.
,
2003
, “
On the Dynamics of the Friction Coefficient
,”
Wear
,
254
(
9
), pp.
852
858
.
48.
Chang
,
L.
,
Zhang
,
Z.
,
Ye
,
L.
, and
Friedrich
,
K.
,
2008
, “Chapter 3—Synergistic Effects of Nanoparticles and Traditional Tribo-Fillers on Sliding Wear of Polymeric Hybrid Composites,”
Tribology and Interface Engineering Series
,
K.
Friedrich
, and
A. K.
Schlarb
, eds.,
Elsevier
,
Amsterdam, Netherlands
, pp.
35
61
.
49.
Rosenkranz
,
A.
,
Costa
,
H. L.
,
Baykara
,
M. Z.
, and
Martini
,
A.
,
2021
, “
Synergetic Effects of Surface Texturing and Solid Lubricants to Tailor Friction and Wear—A Review
,”
Tribol. Int.
,
155
(
3
), p.
106792
.
50.
Kachhap
,
R. K.
, and
Satapathy
,
B. K.
,
2017
, “
Cenosphere–Molybdenum Disulfide”–New Filler–Lubricant Combination for Performance Synergism in Composite Friction Materials
,”
ASME J. Tribol.
,
139
(
5
), p.
055001
.
51.
Singaravelu
,
D. L.
,
Vijay
,
R.
, and
Filip
,
P.
,
2019
, “
Influence of Various Cashew Friction Dusts on the Fade and Recovery Characteristics of Non-Asbestos Copper Free Brake Friction Composites
,”
Wear
,
426–427
(
4
), pp.
1129
1141
.
52.
Kachhap
,
R. K.
, and
Satapathy
,
B. K.
,
2014
, “
Synergistic Effect of Tungsten Disulfide and Cenosphere Combination on Braking Performance of Composite Friction Materials
,”
Mater. Des. (1980–2015)
,
56
(
4
), pp.
368
378
.
53.
Österle
,
W.
,
Kloß
,
H.
,
Urban
,
I.
, and
Dmitriev
,
A. I.
,
2007
, “
Towards a Better Understanding of Brake Friction Materials
,”
Wear
,
263
(
7
), pp.
1189
1201
.
54.
Rhee
,
S. K.
,
1974
, “
Friction Properties of a Phenolic Resin Filled With Iron and Graphite—Sensitivity to Load, Speed and Temperature
,”
Wear
,
28
(
2
), pp.
277
281
.
55.
Satapathy
,
B. K.
, and
Bijwe
,
J.
,
2006
, “
Composite Friction Materials Based on Organic Fibres: Sensitivity of Friction and Wear to Operating Variables
,”
Compos. Part A
,
37
(
10
), pp.
1557
1567
.
56.
Liu
,
R.
, and
Li
,
D. Y.
,
2001
, “
Modification of Archard’s Equation by Taking Account of Elastic/Pseudoelastic Properties of Materials
,”
Wear
,
251
(
1
), pp.
956
964
.
57.
Tiwari
,
A.
,
Jaggi
,
H. S.
,
Kachhap
,
R. K.
,
Satapathy
,
B. K.
,
Maiti
,
S. N.
, and
Tomar
,
B. S.
,
2014
, “
Comparative Performance Assessment of Cenosphere and Barium Sulphate Based Friction Composites
,”
Wear
,
309
(
1
), pp.
259
268
.
58.
Rhee
,
S. K.
,
1974
, “
Friction Coefficient of Automotive Friction Materials—Its Sensitivity to Load, Speed, and Temperature
,”
SAE Trans.
,
83
(2), pp.
1575
1580
.
59.
Kannaiyan
,
M.
,
Karthikeyan
,
G.
, and
Thankachi Raghuvaran
,
J. G.
,
2020
, “
Prediction of Specific Wear Rate for LM25/ZrO2 Composites Using Levenberg–Marquardt Backpropagation Algorithm
,”
J. Mater. Res. Technol.
,
9
(
1
), pp.
530
538
.
60.
Jiang
,
P.
, and
Chen
,
J.
,
2016
, “
Displacement Prediction of Landslide Based on Generalized Regression Neural Networks With K-Fold Cross-Validation
,”
Neurocomputing
,
198
(
7
), pp.
40
47
.
61.
Bhamare
,
D. K.
,
Saikia
,
P.
,
Rathod
,
M. K.
,
Rakshit
,
D.
, and
Banerjee
,
J.
,
2021
, “
A Machine Learning and Deep Learning Based Approach to Predict the Thermal Performance of Phase Change Material Integrated Building Envelope
,”
Build. Environ.
,
199
(
7
), p.
107927
.
You do not currently have access to this content.