Abstract

To improve the endurance and reliability of cylindrical roller bearings (CRBs) under complex operating conditions, a dynamic model of CRB is developed. The model incorporates a roller–raceway contact model to optimize roller profile and is further verified with published data. Systematic parametric analyses are conducted to investigate the influence of flange angle, roller-end sphere radius, and roller profile on load distribution, roller tilt, roller skew, and contact performance. The results suggest that high flange–roller contact location and contact stiffness can effectively extend fatigue life of the bearing, while low flange–roller contact location can reduce the heat generation. In addition, roller profile has negligible effect on load distribution, but an optimized roller profile can improve the anti-tilt capacity. The developed model provides a tool for the internal design and frictional loss optimization of CRB under combined loads.

References

1.
Brown
,
S. R.
, and
Poon
,
S. Y.
,
1983
, “
The Lubrication of the Roller-Rib Contacts of a Radial Cylindrical Roller Bearing Carrying Thrust Load
,”
ASLE Trans.
,
26
(
3
), pp.
317
324
.
2.
Taib
,
M. T. B.
,
Umehara
,
N.
,
Tokoroyama
,
T.
, and
Murashima
,
M.
,
2018
, “
The Effect of UV Irradiation to a-C:H on Friction and Wear Properties Under PAO Oil Lubrication Including MoDTC and ZnDTP
,”
Tribol. Online
,
13
(
3
), pp.
119
130
.
3.
Kani
,
T.
,
Tokoroyama
,
T.
,
Umehara
,
N.
,
Murashima
,
M.
,
Lee
,
W.-Y.
, and
Yagishita
,
K.
,
2021
, “
The Tribological Properties of Hydrogenated DLC Coating Lubrication With Additive Having Glycerol and Phosphonate Structure
,”
Tribol. Online
,
16
(
4
), pp.
263
270
.
4.
Chudzik
,
A.
, and
Warda
,
B.
,
2019
, “
Effect of Radial Internal Clearance on the Fatigue Life of the Radial Cylindrical Roller Bearing
,”
Eksploat. i Niezawodn.
,
21
(
2
), pp.
211
219
.
5.
Chudzik
,
A.
, and
Warda
,
B.
,
2020
, “
Fatigue Life Prediction of a Radial Cylindrical Roller Bearing Subjected to a Combined Load Using FEM
,”
Maint. Reliab.
,
22
(
2
), pp.
212
220
.
6.
Tong
,
V. C.
,
Kwon
,
S. W.
, and
Hong
,
S. W.
,
2016
, “
Fatigue Life of Cylindrical Roller Bearings
,”
ARCHIVE Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
231
(
5
), pp.
623
636
.
7.
Canh
,
T.
, and
Hong
,
S. W.
,
2017
, “
Modeling and Analysis of Double-Row Cylindrical Roller Bearings
,”
J. Mech. Sci. Technol.
,
31
(
7
), pp.
3379
3388
.
8.
Londhe
,
N. D.
,
Arakere
,
N. K.
, and
Subhash
,
G.
,
2019
, “
Effect of Plasticity on the Dynamic Capacity of Modern Bearing Steels
,”
Tribol. Int.
,
133
, pp.
160
171
.
9.
Cheenady
,
A. A.
,
Arakere
,
N. K.
, and
Londhe
,
N. D.
,
2020
, “
Accounting for Microstructure Sensitivity and Plasticity in Life Prediction of Heavily Loaded Contacts Under Rolling Contact Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
,
43
(
3
), pp.
539
549
.
10.
Londhe
,
N.
,
Arakere
,
N.
, and
Subhash
,
G.
,
2017
, “
Extended Hertz Theory of Contact Mechanics for Case-Hardened Steels With Implications for Bearing Fatigue Life
,”
ASME J. Tribol.
,
140
(
2
), pp.
021401
021401
.
11.
Zhang
,
M.
, and
Yan
,
Z.
,
2022
, “
Effects of Near-Surface Composites on Frictional Rolling Contact Solved by a Semi-Analytical Model
,”
ASME J. Tribol.
,
144
(
2
), p.
021502
.
12.
Duan
,
H.
,
Song
,
J.
, and
Wang
,
Z.
,
2020
, “
Lubrication and Fatigue Life Evaluation of High-Speed Cylindrical Roller Bearing Under Misalignment
,”
Math. Probl. Eng.
,
2020
, pp.
1
11
.
13.
Krzemiński-Freda
,
H.
, and
Warda
,
B.
,
1989
, “
The Effect of Roller End-Flange Contact Shape Upon Frictional Losses and Axial Load of the Radial Cylindrical Roller Bearing
,”
Tribology
,
14
, pp.
287
295
.
14.
Warda
,
B.
, and
Chudzik
,
A.
,
2014
, “
Fatigue Life Prediction of the Radial Roller Bearing With the Correction of Roller Generators
,”
Int. J. Mech. Sci.
,
89
, pp.
299
310
.
15.
Sauer
,
B.
, and
Kiekbusch
,
T.
,
2017
, “
Dynamic Simulation of the Interaction Between Raceway and Rib Contact of Cylindrical Roller Bearings
,”
Society of Tribologists & Lubrication Engineers Annual Meeting & Exhibition
,
Atlanta, GA
,
May 21–25
.
16.
Kabus
,
S.
,
Hansen
,
M. R.
, and
Mouritsen
,
O. O.
,
2012
, “
A New Quasi-Static Cylindrical Roller Bearing Model to Accurately Consider Non-Hertzian Contact Pressure in Time Domain Simulations
,”
ASME J. Tribol.
,
134
(
4
), p.
041401
.
17.
Prisacaru
,
G.
,
1995
, “
Load Distribution in a Cylindrical Roller Bearing in High Speed and Combined Load Conditions
,”
Eur. J. Mech. Environ. Eng.
,
40
, pp.
19
25
.
18.
Harris
,
T. A.
,
Kotzalas
,
M. N.
, and
Yu
,
W. K.
,
1998
, “
On the Causes and Effects of Roller Skewing in Cylindrical Roller Bearings
,”
ASLE Trans.
,
41
(
4
), pp.
572
578
.
19.
Ai
,
X. L.
,
2019
, “
Roller Bearing With Enhanced Roller-End and Flange Contact
,” US, p.
10
(428):870B2.
20.
Bayrak
,
R.
, and
Sagirli
,
A.
,
2022
, “
Fatigue Life Analysis of the Radial Cylindrical Roller Bearings: Roller End-Flange Construction Effect
,”
Mech. Based Des. Struct. Mach.
, pp.
1
26
.
21.
Zhou
,
R. S.
, and
Hoeprich
,
M. R.
,
1991
, “
Torque of Tapered Roller Bearings
,”
ASME J. Tribol.
,
113
(
3
), pp.
590
597
.
22.
Johnson
,
K. L.
,
Greenwood
,
J. A.
, and
Poon
,
S. Y.
,
1972
, “
A Simple Theory of Asperity Contact in Elastohydro-Dynamic Lubrication
,”
Wear
,
19
(
1
), pp.
91
108
.
23.
Liu
,
S. B.
,
Wang
,
Q.
, and
Liu
,
G.
,
2000
, “
A Versatile Method of Discrete Convolution and FFT (DC-FFT) for Contact Analyses
,”
Wear
,
243
(
1–2
), pp.
101
111
.
24.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2006
,
Rolling Bearing Analysis—2 Volume Set
, 5th ed.,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.