Abstract

With the development of integrated circuits, the structure of chips becomes more and more complex, and the processing cost increases accordingly. To improve the productivity of lithography, the acceleration of the reticle stage should be increased to reduce the positioning time. However, the increase of acceleration will cause the relative slip between the reticle and the vacuum chuck, which seriously affects the accuracy and the product yield of lithography. To suppress the slippage, the friction mechanism and the characteristics between the reticle and the chuck are studied in this article. First, based on the Kogut–Etsion contact model and the Majumdar–Bhushan (MB) fractal contact model, the maximum static friction coefficient model between nano-scale surfaces was established. Then, the surface morphology parameters of reticle and chuck adsorption surface were obtained by atomic force microscopy (AFM) scanning. Finally, the maximum static friction force experiments show that the MB model is more suitable for the study of friction mechanism between reticle and vacuum chuck, and the model is more instructive for the suppression of reticle slip.

References

1.
Moore
,
G. E.
,
2006
, “
Progress in Digital Integrated Electronics
,”
IEEE International Electronic Devices Meeting
,
San Francisco, CA
,
Dec. 11–13
.
2.
Banerjee
,
S.
,
Agarwal
,
K. B.
, and
Orshansky
,
M.
,
2011
, “
Simultaneous OPC and Decomposition for Double Exposure Lithography
,”
Proc. SPIE
,
7973
, pp.
298
306
.
3.
Yaegashi
,
H.
,
Oyama
,
K.
,
Hara
,
A.
,
Natori
,
S.
,
Yamauchi
,
S.
, and
Yamato
,
M.
,
2013
,
Advanced Etch Technology for Nanopatterning II
, Y. Zhang, G. S. Oehrlein, and Q. Lin, eds., Vol.
8685
,
Spie-Int Soc Optical Engineering
,
Bellingham
, p.
86850M
.
4.
Lai
,
K.
,
Erdmann
,
A.
,
Ma
,
X.
,
Gao
,
J.
,
Han
,
C.
, and
Li
,
Y.
,
2014
, “
Efficient Source Polarization Optimization for Robust Optical Lithography
,”
SPIE
,
9052
, p.
90520T
.
5.
Naaijkens
,
G. J. P.
,
Conley
,
W.
,
Rosielle
,
P. C. J. N.
, and
Steinbuch
,
M.
,
2013
, “
Mask Side Wall Clamping
,”
SPIE Adv. Lithogr.
,
8683
, p.
86832I
.
6.
Amin-Shahidi
,
D.
, and
Trumper
,
D. L.
,
2014
, “
Design and Control of a Piezoelectric Driven Reticle Assist Device for Prevention of Reticle Slip in Lithography Systems
,”
Mechatronics
,
24
(
6
), pp.
562
571
.
7.
Hertz
,
H.
,
1881
, “
On the Contact of Elastic Solids
,”
J. Fur Die Reine Und Angewandte Mathematik
,
92
, pp.
156
171
.
8.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London A: Math. Phys. Sci.
,
324
(
1588
), pp.
301
313
.
9.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
,
1975
, “
Effect of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
,
53
(
2
), pp.
314
326
.
10.
Lior
,
K.
, and
Izhak
,
E.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
.
11.
Lior
,
K.
, and
Izhak
,
E.
,
2003
, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surfaces
,”
Tribol. Trans.
,
46
(
3
), pp.
383
390
.
12.
Lior
,
K.
, and
Izhak
,
E.
,
2004
, “
A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces
,”
ASME J. Tribol.
,
126
(
1
), pp.
34
40
.
13.
Majumdar
,
A. A.
, and
Bhushan
,
B.
,
1990
, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME J. Tribol.
,
112
(
2
), pp.
205
216
.
14.
Majumdar
,
A. A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
(
1
), pp.
1
11
.
15.
Xu
,
K.
,
Yuan
,
Y.
, and
Chen
,
J.
,
2018
, “
The Effects of Size Distribution Functions on Contact Between Fractal Rough Surfaces
,”
AIP Adv.
,
8
(
7
), p.
075317
.
16.
Yuan
,
Y.
,
Li
,
G.
,
Kai
,
L.
, and
Xiaohui
,
Y.
,
2017
, “
Elastoplastic Contact Mechanics Model of Rough Surface Based on Fractal Theory
,”
Chin. J. Mech. Eng.
,
30
(
1
), pp.
207
215
.
17.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
295
(
1442
), pp.
300
319
.
18.
Sayles
,
R. S.
, and
Thomas
,
T. R.
,
1978
, “
Surface Topography as a Nonstationary Random Process
,”
Nature
,
271
(
5644
), pp.
431
434
.
19.
Mandelbrot
,
B.
,
1967
, “
How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension
,”
Science
,
156
(
3775
), pp.
636
638
.
20.
Wang
,
S.
, and
Komvopoulos
,
K.
,
1994
, “
A Fractal Theory of the Interfacial Temperature Distribution in the Slow Sliding Regime: Part i—Elastic Contact and Heat Transfer Analysis
,”
ASME J. Tribol.
,
116
(
4
), pp.
812
822
.
21.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Semi-Analytical Solution for the Sliding Inception of a Spherical Contact
,”
ASME J. Tribol.
,
125
(
3
), pp.
499
506
.
22.
Ganti
,
S.
, and
Bhushan
,
B.
,
1995
, “
Generalized Fractal Analysis and Its Applications to Engineering Surfaces
,”
Wear
,
180
(
1–2
), pp.
17
34
.
23.
Wu
,
J. J.
,
2001
, “
Structure Function and Spectral Density of Fractal Profiles
,”
Chaos Solitons Fractals.
,
12
(
13
), pp.
2481
2492
.
24.
Ji
,
C. C.
,
Zhu
,
H.
,
Jiang
,
W.
, and
Lu
,
B. B.
,
2010
, “
Running-In Test and Fractal Methodology for Worn Surface Topography Characterization
,”
Chin. J. Mech. Eng.
,
23
(
5
), pp.
600
605
.
25.
Morag
,
Y.
, and
Etsion
,
I.
,
2007
, “
Resolving the Contradiction of Asperities Plastic to Elastic Mode Transition in Current Contact Models of Fractal Rough Surfaces
,”
Wear
,
262
(
5–6
), pp.
624
629
.
26.
Liou
,
J. L.
,
Lin
,
J. F.
,
Liou
,
J. L.
, and
Lin
,
J. F.
,
2010
, “
A Modified Fractal Microcontact Model Developed for Asperity Heights With Variable Morphology Parameters
,”
Wear
,
268
(
1
), pp.
133
144
.
27.
Stronge
,
W. J.
,
2000
,
Impacts in Mechanical Systems
,
B.
Brogliato
, ed., Vol.
551
,
Springer
,
Berlin, Heidelberg
, pp.
189
234
.
28.
Liu
,
W.
,
Yang
,
J.
,
Xi
,
N.
,
Shen
,
J.
, and
Li
,
L.
,
2015
, “
A Study of Normal Dynamic Parameter Models of Joint Interfaces Based on Fractal Theory
,”
J. Adv. Mech. Des. Syst. Manuf.
,
9
(
5
), p.
JAMDSM0070
.
29.
Hamilton
,
G. M.
, and
Goodman
,
L. E.
,
1966
, “
The Stress Field Created by a Circular Sliding Contact
,”
ASME J. Appl. Mech.
,
33
(
2
), pp.
371
376
.
30.
Spittel
,
M.
, and
Spittel
,
T.
,
2011
, “
AlZn5.5MgCu
,”
Landolt Börnstein.
,
2
, p.
480
.
You do not currently have access to this content.