Abstract

Based on “slice method,” the improved time-varying mesh stiffness (TVMS) calculation model of helical gear pair with tooth surface wear is proposed, in which the effect of friction force that obtained under mixed elastohydrodynamic lubrication (EHL) is considered in the model. Based on the improved TVMS calculation model, the dynamic model of helical gear system is established, then the influence of tooth wear parameters on the dynamic response is studied. The results illustrate that the varying reduction extents of mesh stiffness along tooth profile under tooth surface wear, in addition, the dynamic response in time-domain and frequency-domain present significant decline in amplitude under deteriorating wear condition.

References

1.
Chen
,
Z. G.
, and
Shao
,
Y. M.
,
2012
, “
Mesh Stiffness Calculation of a Spur Gear Pair With Tooth Profile Modification and Tooth Root Crack
,”
Mech. Mach. Theory
,
62
, pp.
63
74
.
2.
Wang
,
Q.
,
Hu
,
P.
,
Zhang
,
Y.
,
Wang
,
Y.
,
Pang
,
X.
, and
Cao
,
T.
,
2014
, “
A Model to Determine Mesh Characteristics in a Gear Pair With Tooth Profile Error
,”
Adv. Mech. Eng.
,
2014
(
1
), pp.
1
10
.
3.
Fernandez
,
A.
,
Iglesias
,
M.
,
De-Juan
,
A.
,
Garcia
,
P.
,
Sancibrian
,
R.
, and
Viadero
,
F.
,
2014
, “
Gear Transmission Dynamic: Effects of Tooth Profile Deviations and Support Flexibility
,”
Appl. Acoust.
,
77
, pp.
138
149
.
4.
Hui
,
M.
,
Jin
,
Z.
,
Feng
,
R.
,
Xu
,
P.
, and
Wen
,
B.
,
2016
, “
An Improved Analytical Method for Mesh Stiffness Calculation of Spur Gears With Tip Relief
,”
Mech. Mach.
,
98
, pp.
64
80
.
5.
Choy
,
F. K.
,
Polyshchuk
,
V.
,
Zakrajsek
,
J. J.
,
Handschuh
,
R. F.
, and
Townsend
,
D. P.
,
2015
, “
Analysis of the Effects of Surface Pitting and Wear on the Vibration of a Gear Transmission System
,”
Tribol. Int.
,
29
(
1
), pp.
77
83
.
6.
Flodin
,
A.
, and
Andersson
,
S.
,
1997
, “
Simulation of Mild Wear in Spur Gears
,”
Wear
,
207
(
1–2
), pp.
16
23
.
7.
Flodin
,
A.
, and
Andersson
,
S.
,
2000
, “
Simulation of Mild Wear in Helical Gears
,”
Wear
,
241
(
2
), pp.
123
128
.
8.
Yesilyurt
,
I.
,
Gu
,
F. S.
, and
Ball
,
A. D.
,
2003
, “
Gear Tooth Stiffness Reduction Measurement Using Modal Analysis and Its Use in Wear Fault Severity Assessment of Spur Gears
,”
NDT E Int.
,
36
(
5
), pp.
357
372
.
9.
Bajpai
,
P.
,
Kahraman
,
A.
, and
Anderson
,
N. E.
,
2004
, “
A Surface Wear Prediction Methodology for Parallel-Axis Gear Pairs
,”
ASME J. Tribol.
,
126
(
3
), pp.
597
605
.
10.
İmrek
,
H.
, and
Düzcükoğlu
,
H.
,
2007
, “
Relation Between Wear and Tooth Width Modification in Spur Gears
,”
Wear
,
262
(
3–4
), pp.
390
394
.
11.
Akbarzadeh
,
S.
, and
Khonsari
,
M. M.
,
2009
, “
Prediction of Steady State Adhesive Wear in Spur Gears Using the EHL Load Sharing Concept
,”
ASME J. Tribol.
,
131
(
2
), p.
024503
.
12.
Kahraman
,
A.
, and
Ding
,
H. L.
,
2010
, “
A Methodology to Predict Surface Wear of Planetary Gears Under Dynamic Conditions
,”
Mech. Based Des. Struct. Mech.
,
38
(
4
), pp.
493
515
.
13.
Bergseth
,
E.
,
Olofsson
,
U.
,
Lewis
,
R.
, and
Lewis
,
S.
,
2012
, “
Effect of Gear Surface and Lubricant Interaction on Mild Wear
,”
Tribol. Lett.
,
48
(
2
), pp.
183
200
.
14.
Tunalioglu
,
M. S.
, and
Tuc
,
B.
,
2014
, “
Theoretical and Experimental Investigation of Wear in Internal Gears
,”
Wear
,
309
(
1–2
), pp.
208
215
.
15.
Brandão
,
J. A.
,
Cerqueira
,
P.
,
Seabra
,
J. H. O.
, and
Castro
,
M. J. D.
,
2016
, “
Measurement of Mean Wear Coefficient During Gear Tests Under Various Operating Conditions
,”
Tribol. Int.
,
102
, pp.
61
69
.
16.
Liu
,
X. Z.
,
Yang
,
Y. H.
, and
Zhang
,
J.
,
2016
, “
Investigation on Coupling Effects Between Surface Wear and Dynamics in a Spur Gear System
,”
Tribol. Int.
,
101
, pp.
383
394
.
17.
Shen
,
Z.
,
Qiao
,
B.
,
Yang
,
L.
,
Luo
,
W.
, and
Chen
,
X.
,
2019
, “
Evaluating the Influence of Tooth Surface Wear on TVMS of Planetary Gear Set
,”
Mech. Mach. Theory
,
136
, pp.
206
223
.
18.
Shen
,
Z.
,
Qiao
,
B.
,
Yang
,
L.
,
Luo
,
W.
,
Yang
,
Z.
, and
Chen
,
X.
,
2020
, “
Fault Mechanism and Dynamic Modeling of Planetary Gear With Gear Wear
,”
Mech. Mach. Theory
,
155
, p.
104098
.
19.
Wan
,
Z.
,
Cao
,
H.
,
Zi
,
Y.
,
He
,
W.
, and
Chen
,
Y.
,
2015
, “
Mesh Stiffness Calculation Using an Accumulated Integral Potential Energy Method and Dynamic Analysis of Helical Gears
,”
Mech. Mach. Theory
,
9
, pp.
447
463
.
20.
Wang
,
Q. B.
, and
Zhang
,
Y. M.
,
2017
, “
A Model for Analyzing Stiffness and Stress in a Helical Gear Pair With Tooth Profile Errors
,”
J. Vib. Control
,
23
(
2
), pp.
272
289
.
21.
Wang
,
Q.
,
Zhao
,
B.
,
Fu
,
Y.
,
Kong
,
X.
, and
Ma
,
H.
,
2018
, “
An Improved Time-Varying Mesh Stiffness Model for Helical Gear Pairs Considering Axial Mesh Force Component
,”
Mech. Syst. Signal Process.
,
106
, pp.
413
429
.
22.
Feng
,
M.
,
Ma
,
H.
,
Li
,
Z.
,
Wang
,
Q.
, and
Wen
,
B.
,
2018
, “
An Improved Analytical Method for Calculating Time-Varying Mesh Stiffness of Helical Gears
,”
Meccanica
,
53
(
4–5
), pp.
1131
1145
.
23.
Huangfu
,
Y. F.
,
Chen
,
K. K.
,
Ma
,
H.
,
Che
,
L.
,
Li
,
Z.
, and
Wen
,
B.
,
2018
, “
Deformation and Meshing Stiffness Analysis of Cracked Helical Gear Pairs
,”
Eng. Failure Anal.
,
95
, pp.
30
46
.
24.
Chen
,
K.
,
Ma
,
H.
,
Che
,
L.
,
Li
,
Z.
, and
Wen
,
B.
,
2019
, “
Comparison of Meshing Characteristics of Helical Gears With Spalling Fault Using Analytical and Finite-Element Methods
,”
Mech. Syst. Signal Process.
,
121
, pp.
279
298
.
25.
Castro
,
J.
, and
Seabra
,
J.
,
2007
, “
Coefficient of Friction in Mixed Film Lubrication: Gears Versus Twin-Discs
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
221
(
3
), pp.
399
411
.
26.
Saxena
,
A.
,
Parey
,
A.
, and
Chouksey
,
M.
,
2015
, “
Effect of Shaft Misalignment and Friction Force on Time Varying Mesh Stiffness of Spur Gear Pair
,”
Eng. Failure Anal.
,
49
, pp.
79
91
.
27.
Saxena
,
A.
,
Anand
,
P.
, and
Manoj
,
C.
,
2016
, “
Time Varying Mesh Stiffness Calculation of Spur Gear Pair Considering Sliding Friction and Spalling Defects
,”
Eng. Failure Anal.
,
70
, pp.
200
211
.
28.
Wang
,
S. Y.
, and
Zhu
,
R. P.
,
2020
, “
An Improved Mesh Stiffness Calculation Model of Spur Gear Pair Under Mixed EHL Friction With Spalling Effect
,”
Vibroeng. Procedia
,
33
, pp.
176
181
.
29.
Wang
,
S. Y.
, and
Zhu
,
R. P.
,
2021
, “
An Improved Mesh Stiffness Model for Double-Helical Gear Pair With Spalling Defects Considering Time-Varying Friction Coefficient Under Mixed EHL
,”
Eng. Failure Anal.
,
121
, p.
105174
.
30.
Munro
,
R. G.
,
Palmer
,
D.
, and
Morrish
,
L.
,
2001
, “
An Experimental Method to Measure Gear Tooth Stiffness Throughout and Beyond the Path of Contact
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
215
(
7
), pp.
793
803
.
31.
Chen
,
Z. G.
, and
Shao
,
Y. M.
,
2011
, “
Dynamic Simulation of Spur Gear With Tooth Root Crack Propagating Along Tooth Width and Crack Depth
,”
Eng. Failure Anal.
,
18
(
8
), pp.
2149
2164
.
32.
Cornell
,
R. W.
,
1981
, “
Compliance and Stress Sensitivity of Spur Gear Teeth
,”
ASME J. Mech. Des.
,
103
(
2
), pp.
447
459
.
33.
Sainsot
,
P.
,
Velex
,
P.
, and
Duverger
,
O.
,
2004
, “
Contribution of Gear Body to Tooth Deflections—A New Bidimensional Analytical Formula
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
748
752
.
34.
Zhu
,
D.
, and
Hu
,
Y. Z.
,
2001
, “
A Computer Program Package for the Prediction of EHL and Mixed Lubrication Characteristics, Friction, Subsurface Stresses and Flash Temperatures Based on Measured 3D Surface Roughness
,”
Tribol. Trans
,
44
(
3
), pp.
383
390
.
35.
Xu
,
H.
,
Kahraman
,
A.
,
Anderson
,
N. E.
, and
Maddock
,
D. G.
,
2007
, “
Prediction of Mechanical Efficiency of Parallel-Axis Gear Pairs
,”
ASME J. Mech. Des.
,
129
(
1
), pp.
58
68
.
You do not currently have access to this content.