Abstract
Based on “slice method,” the improved time-varying mesh stiffness (TVMS) calculation model of helical gear pair with tooth surface wear is proposed, in which the effect of friction force that obtained under mixed elastohydrodynamic lubrication (EHL) is considered in the model. Based on the improved TVMS calculation model, the dynamic model of helical gear system is established, then the influence of tooth wear parameters on the dynamic response is studied. The results illustrate that the varying reduction extents of mesh stiffness along tooth profile under tooth surface wear, in addition, the dynamic response in time-domain and frequency-domain present significant decline in amplitude under deteriorating wear condition.
References
1.
Chen
, Z. G.
, and Shao
, Y. M.
, 2012
, “Mesh Stiffness Calculation of a Spur Gear Pair With Tooth Profile Modification and Tooth Root Crack
,” Mech. Mach. Theory
, 62
, pp. 63
–74
. 2.
Wang
, Q.
, Hu
, P.
, Zhang
, Y.
, Wang
, Y.
, Pang
, X.
, and Cao
, T.
, 2014
, “A Model to Determine Mesh Characteristics in a Gear Pair With Tooth Profile Error
,” Adv. Mech. Eng.
, 2014
(1
), pp. 1
–10
. 3.
Fernandez
, A.
, Iglesias
, M.
, De-Juan
, A.
, Garcia
, P.
, Sancibrian
, R.
, and Viadero
, F.
, 2014
, “Gear Transmission Dynamic: Effects of Tooth Profile Deviations and Support Flexibility
,” Appl. Acoust.
, 77
, pp. 138
–149
. 4.
Hui
, M.
, Jin
, Z.
, Feng
, R.
, Xu
, P.
, and Wen
, B.
, 2016
, “An Improved Analytical Method for Mesh Stiffness Calculation of Spur Gears With Tip Relief
,” Mech. Mach.
, 98
, pp. 64
–80
. 5.
Choy
, F. K.
, Polyshchuk
, V.
, Zakrajsek
, J. J.
, Handschuh
, R. F.
, and Townsend
, D. P.
, 2015
, “Analysis of the Effects of Surface Pitting and Wear on the Vibration of a Gear Transmission System
,” Tribol. Int.
, 29
(1
), pp. 77
–83
. 6.
Flodin
, A.
, and Andersson
, S.
, 1997
, “Simulation of Mild Wear in Spur Gears
,” Wear
, 207
(1–2
), pp. 16
–23
. 7.
Flodin
, A.
, and Andersson
, S.
, 2000
, “Simulation of Mild Wear in Helical Gears
,” Wear
, 241
(2
), pp. 123
–128
. 8.
Yesilyurt
, I.
, Gu
, F. S.
, and Ball
, A. D.
, 2003
, “Gear Tooth Stiffness Reduction Measurement Using Modal Analysis and Its Use in Wear Fault Severity Assessment of Spur Gears
,” NDT E Int.
, 36
(5
), pp. 357
–372
. 9.
Bajpai
, P.
, Kahraman
, A.
, and Anderson
, N. E.
, 2004
, “A Surface Wear Prediction Methodology for Parallel-Axis Gear Pairs
,” ASME J. Tribol.
, 126
(3
), pp. 597
–605
. 10.
İmrek
, H.
, and Düzcükoğlu
, H.
, 2007
, “Relation Between Wear and Tooth Width Modification in Spur Gears
,” Wear
, 262
(3–4
), pp. 390
–394
. 11.
Akbarzadeh
, S.
, and Khonsari
, M. M.
, 2009
, “Prediction of Steady State Adhesive Wear in Spur Gears Using the EHL Load Sharing Concept
,” ASME J. Tribol.
, 131
(2
), p. 024503
. 12.
Kahraman
, A.
, and Ding
, H. L.
, 2010
, “A Methodology to Predict Surface Wear of Planetary Gears Under Dynamic Conditions
,” Mech. Based Des. Struct. Mech.
, 38
(4
), pp. 493
–515
. 13.
Bergseth
, E.
, Olofsson
, U.
, Lewis
, R.
, and Lewis
, S.
, 2012
, “Effect of Gear Surface and Lubricant Interaction on Mild Wear
,” Tribol. Lett.
, 48
(2
), pp. 183
–200
. 14.
Tunalioglu
, M. S.
, and Tuc
, B.
, 2014
, “Theoretical and Experimental Investigation of Wear in Internal Gears
,” Wear
, 309
(1–2
), pp. 208
–215
. 15.
Brandão
, J. A.
, Cerqueira
, P.
, Seabra
, J. H. O.
, and Castro
, M. J. D.
, 2016
, “Measurement of Mean Wear Coefficient During Gear Tests Under Various Operating Conditions
,” Tribol. Int.
, 102
, pp. 61
–69
. 16.
Liu
, X. Z.
, Yang
, Y. H.
, and Zhang
, J.
, 2016
, “Investigation on Coupling Effects Between Surface Wear and Dynamics in a Spur Gear System
,” Tribol. Int.
, 101
, pp. 383
–394
. 17.
Shen
, Z.
, Qiao
, B.
, Yang
, L.
, Luo
, W.
, and Chen
, X.
, 2019
, “Evaluating the Influence of Tooth Surface Wear on TVMS of Planetary Gear Set
,” Mech. Mach. Theory
, 136
, pp. 206
–223
. 18.
Shen
, Z.
, Qiao
, B.
, Yang
, L.
, Luo
, W.
, Yang
, Z.
, and Chen
, X.
, 2020
, “Fault Mechanism and Dynamic Modeling of Planetary Gear With Gear Wear
,” Mech. Mach. Theory
, 155
, p. 104098
. 19.
Wan
, Z.
, Cao
, H.
, Zi
, Y.
, He
, W.
, and Chen
, Y.
, 2015
, “Mesh Stiffness Calculation Using an Accumulated Integral Potential Energy Method and Dynamic Analysis of Helical Gears
,” Mech. Mach. Theory
, 9
, pp. 447
–463
. 20.
Wang
, Q. B.
, and Zhang
, Y. M.
, 2017
, “A Model for Analyzing Stiffness and Stress in a Helical Gear Pair With Tooth Profile Errors
,” J. Vib. Control
, 23
(2
), pp. 272
–289
. 21.
Wang
, Q.
, Zhao
, B.
, Fu
, Y.
, Kong
, X.
, and Ma
, H.
, 2018
, “An Improved Time-Varying Mesh Stiffness Model for Helical Gear Pairs Considering Axial Mesh Force Component
,” Mech. Syst. Signal Process.
, 106
, pp. 413
–429
. 22.
Feng
, M.
, Ma
, H.
, Li
, Z.
, Wang
, Q.
, and Wen
, B.
, 2018
, “An Improved Analytical Method for Calculating Time-Varying Mesh Stiffness of Helical Gears
,” Meccanica
, 53
(4–5
), pp. 1131
–1145
. 23.
Huangfu
, Y. F.
, Chen
, K. K.
, Ma
, H.
, Che
, L.
, Li
, Z.
, and Wen
, B.
, 2018
, “Deformation and Meshing Stiffness Analysis of Cracked Helical Gear Pairs
,” Eng. Failure Anal.
, 95
, pp. 30
–46
. 24.
Chen
, K.
, Ma
, H.
, Che
, L.
, Li
, Z.
, and Wen
, B.
, 2019
, “Comparison of Meshing Characteristics of Helical Gears With Spalling Fault Using Analytical and Finite-Element Methods
,” Mech. Syst. Signal Process.
, 121
, pp. 279
–298
. 25.
Castro
, J.
, and Seabra
, J.
, 2007
, “Coefficient of Friction in Mixed Film Lubrication: Gears Versus Twin-Discs
,” Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
, 221
(3
), pp. 399
–411
. 26.
Saxena
, A.
, Parey
, A.
, and Chouksey
, M.
, 2015
, “Effect of Shaft Misalignment and Friction Force on Time Varying Mesh Stiffness of Spur Gear Pair
,” Eng. Failure Anal.
, 49
, pp. 79
–91
. 27.
Saxena
, A.
, Anand
, P.
, and Manoj
, C.
, 2016
, “Time Varying Mesh Stiffness Calculation of Spur Gear Pair Considering Sliding Friction and Spalling Defects
,” Eng. Failure Anal.
, 70
, pp. 200
–211
. 28.
Wang
, S. Y.
, and Zhu
, R. P.
, 2020
, “An Improved Mesh Stiffness Calculation Model of Spur Gear Pair Under Mixed EHL Friction With Spalling Effect
,” Vibroeng. Procedia
, 33
, pp. 176
–181
. 29.
Wang
, S. Y.
, and Zhu
, R. P.
, 2021
, “An Improved Mesh Stiffness Model for Double-Helical Gear Pair With Spalling Defects Considering Time-Varying Friction Coefficient Under Mixed EHL
,” Eng. Failure Anal.
, 121
, p. 105174
. 30.
Munro
, R. G.
, Palmer
, D.
, and Morrish
, L.
, 2001
, “An Experimental Method to Measure Gear Tooth Stiffness Throughout and Beyond the Path of Contact
,” Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
, 215
(7
), pp. 793
–803
. 31.
Chen
, Z. G.
, and Shao
, Y. M.
, 2011
, “Dynamic Simulation of Spur Gear With Tooth Root Crack Propagating Along Tooth Width and Crack Depth
,” Eng. Failure Anal.
, 18
(8
), pp. 2149
–2164
. 32.
Cornell
, R. W.
, 1981
, “Compliance and Stress Sensitivity of Spur Gear Teeth
,” ASME J. Mech. Des.
, 103
(2
), pp. 447
–459
. 33.
Sainsot
, P.
, Velex
, P.
, and Duverger
, O.
, 2004
, “Contribution of Gear Body to Tooth Deflections—A New Bidimensional Analytical Formula
,” ASME J. Mech. Des.
, 126
(4
), pp. 748
–752
. 34.
Zhu
, D.
, and Hu
, Y. Z.
, 2001
, “A Computer Program Package for the Prediction of EHL and Mixed Lubrication Characteristics, Friction, Subsurface Stresses and Flash Temperatures Based on Measured 3D Surface Roughness
,” Tribol. Trans
, 44
(3
), pp. 383
–390
. 35.
Xu
, H.
, Kahraman
, A.
, Anderson
, N. E.
, and Maddock
, D. G.
, 2007
, “Prediction of Mechanical Efficiency of Parallel-Axis Gear Pairs
,” ASME J. Mech. Des.
, 129
(1
), pp. 58
–68
. Copyright © 2022 by ASME
You do not currently have access to this content.