Abstract

This paper investigates the journal asymmetric temperature-induced thermal bow vibration of a rotor, as supported by a flexure pivot journal bearing (FPJB). Thermal bow-induced vibration, known as the Morton effect (ME), is caused by non-uniform viscous heating of the journal, and the resulting thermal bow often causes increasing vibration amplitudes with the time-varying phase. Full FPJB’s structural and thermal finite element models are developed and integrated into the flexible rotor model. The model is validated by comparing its predicted ME response with experimental results. An FPJB model, which uses predicted “equivalent” radial and tilting stiffness of the bearing, is compared with the full finite element method (FEM)-based model. The impact of FPJB’s design parameters such as web thickness, bearing material, and housing thicknesses are investigated with parametric studies. The results show that FPJB parameter values may have a major effect on the speed range of ME vibration, and its severity.

References

1.
Tong
,
X.
,
Palazzolo
,
A.
, and
Suh
,
J.
,
2017
, “
A Review of the Rotordynamic Thermally Induced Synchronous Instability (Morton) Effect
,”
ASME Appl. Mech. Rev.
,
69
(
6
), p.
060801
.
2.
Gu
,
L.
,
2018
, “
A Review of Morton Effect: From Theory to Industrial Practice
,”
Tribol. Trans.
,
61
(
2
), pp.
381
391
.
3.
de Jongh
,
F.
,
2008
, “
The Synchronous Rotor Instability Phenomenon—Morton Effect
,”
Proceedings of the 37th Turbomachinery Symposium
,
Houston, TX
,
Sept. 8–11
, pp.
159
167
.
4.
Shin
,
D.
,
Yang
,
J.
,
Tong
,
X.
,
Suh
,
J.
, and
Palazzolo
,
A.
,
2020
, “
A Review of Journal Bearing Thermal Effects on Rotordynamic Response
,”
ASME J. Tribol.
,
143
(
3
), p.
031803
.
5.
Kim
,
S.
,
Shin
,
D.
, and
Palazzolo
,
A. B.
,
2021
, “
A Review of Journal Bearing Induced Nonlinear Rotordynamic Vibrations
,”
ASME J. Tribol.
,
143
(
11
), p.
111802
.
6.
Morton
,
P. G.
,
1975
, “
Some Aspects of Thermal Instability in Generators
,” G.E.C. Internal Report No. S/W40 u183.
7.
de Jongh
,
F. M.
, and
Morton
,
P. G.
,
1996
, “
The Synchronous Instability of a Compressor Rotor Due to Bearing Journal Differential Heating
,”
ASME J. Eng. Gas Turbines Power
,
118
(
4
), pp.
816
824
.
8.
de Jongh
,
F.
, and
Van Der Hoeven
,
P.
1998
, “
Application of a Heat Barrier Sleeve to Prevent Synchronous Rotor Instability
,”
Proceedings of the 27th Turbomachinery Symposium
,
Houston, TX
,
Sept. 20–24
, pp.
17
26
.
9.
Berot
,
F.
, and
Dourlens
,
H.
,
1999
, “
On Instability of Overhung Centrifugal Compressors
,” ASME Paper No. 99-GT-202.
10.
Keogh
,
P. S.
, and
Morton
,
P. G.
,
1993
, “
Journal Bearing Differential Heating Evaluation With Influence on Rotor Dynamic Behaviour
,”
Proc. R. Soc. London Ser. A
,
441
(
1913
), pp.
527
548
.
11.
Keogh
,
P.
, and
Morton
,
P.
,
1994
, “
The Dynamic Nature of Rotor Thermal Bending Due to Unsteady Lubricant Shearing Within a Bearing
,”
Proc. R. Soc. London Ser. A
,
445
(
1924
), pp.
273
290
.
12.
Tucker
,
P. G.
, and
Keogh
,
P. S.
,
1996
, “
On the Dynamic Thermal State in a Hydrodynamic Bearing With a Whirling Journal Using CFD Techniques
,”
ASME J. Tribol.
,
118
(
2
), pp.
356
363
.
13.
Gomiciaga
,
R.
, and
Keogh
,
P. S.
,
1999
, “
Orbit Induced Journal Temperature Variation in Hydrodynamic Bearings
,”
ASME J. Tribol.
,
121
(
1
), pp.
77
84
.
14.
Kellenberger
,
W.
,
1980
, “
Spiral Vibrations Due to the Seal Rings in Turbogenerators Thermally Induced Interaction Between Rotor and Stator
,”
ASME J. Mech. Des.
,
102
(
1
), pp.
177
184
.
15.
Kirk
,
G.
,
Guo
,
Z.
, and
Balbahadur
,
A.
,
2003
, “
Synchronous Thermal Instability Prediction for Overhung Rotors
,”
Proceedings of the 32nd Turbomachinery Symposium
,
Houston, TX
,
Sept. 8–11
, pp.
121
135
.
16.
Eckert
,
L.
, and
Schmied
,
J.
,
2008
, “
Spiral Vibration of a Turbogenerator Set: Case History, Stability Analysis, Measurements and Operational Experience
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
012509
.
17.
Murphy
,
B. T.
, and
Lorenz
,
J. A.
,
2010
, “
Simplified Morton Effect Analysis for Synchronous Spiral Instability
,”
ASME J. Vib. Acoust.
,
132
(
5
), p.
051008
.
18.
Childs
,
D. W.
, and
Saha
,
R.
,
2012
, “
A New, Iterative, Synchronous-Response Algorithm for Analyzing the Morton Effect
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
072501
.
19.
Lee
,
J. G.
, and
Palazzolo
,
A.
,
2012
, “
Morton Effect Cyclic Vibration Amplitude Determination for Tilt Pad Bearing Supported Machinery
,”
ASME J. Tribol.
,
135
(
1
), p.
011701
.
20.
Suh
,
J.
, and
Palazzolo
,
A.
,
2014
, “
Three-Dimensional Thermohydrodynamic Morton Effect Simulation—Part I: Theoretical Model
,”
ASME J. Tribol.
,
136
(
3
), p.
031706
.
21.
Suh
,
J.
, and
Palazzolo
,
A.
,
2014
, “
Three-Dimensional Thermohydrodynamic Morton Effect Analysis—Part II: Parametric Studies
,”
ASME J. Tribol.
,
136
(
3
), p.
031707
.
22.
Tong
,
X.
,
Palazzolo
,
A.
, and
Suh
,
J.
,
2016
, “
Rotordynamic Morton Effect Simulation With Transient, Thermal Shaft Bow
,”
ASME J. Tribol.
,
138
(
3
), p.
031705
.
23.
Tong
,
X.
, and
Palazzolo
,
A.
,
2016
, “
Double Overhung Disk and Parameter Effect on Rotordynamic Synchronous Instability—Morton Effect—Part I: Theory and Modeling Approach
,”
ASME J. Tribol.
,
139
(
1
), p.
011705
.
24.
Tong
,
X.
, and
Palazzolo
,
A.
,
2016
, “
Double Overhung Disk and Parameter Effect on Rotordynamic Synchronous Instability—Morton Effect—Part II: Occurrence and Prevention
,”
ASME J. Tribol.
,
139
(
1
), p.
011706
.
25.
Tong
,
X.
, and
Palazzolo
,
A.
,
2018
, “
Tilting Pad Gas Bearing Induced Thermal Bow Rotor Instability
,”
Tribol. Int.
,
121
, pp.
269
279
.
26.
Panara
,
D.
,
Panconi
,
S.
, and
Griffini
,
D.
,
2015
, “
Numerical Prediction and Experimental Validation of Rotor Thermal Instability
,”
Proceedings of the 44th Turbomachinery Symposium
,
Houston, TX
,
Sept. 14–17
, pp.
1
18
.
27.
Shin
,
D.
, and
Palazzolo
,
A. B.
,
2020
, “
Tilting Pad Journal Bearing Misalignment Effect on Thermally Induced Synchronous Instability (Morton Effect)
,”
ASME J. Tribol.
,
143
(
3
), p.
031802
.
28.
Shin
,
D.
, and
Palazzolo
,
A. B.
,
2021
, “
Tilting Pad Bearing Pivot Friction and Design Effects on Thermal Bow-Induced Rotor Vibration
,”
ASME J. Tribol.
,
143
(
12
), p.
121804
.
29.
Shin
,
D.
,
Palazzolo
,
A. B.
, and
Tong
,
X.
,
2020
, “
Squeeze Film Damper Suppression of Thermal Bow-Morton Effect Instability
,”
ASME J. Eng. Gas Turbines Power
,
142
(
12
), p.
121013
.
30.
Guo
,
Z.
, and
Kirk
,
G.
,
2011
, “
Morton Effect Induced Synchronous Instability in Mid-Span Rotor–Bearing Systems—Part I: Mechanism Study
,”
ASME J. Vib. Acoust.
,
133
(
6
), p.
061004
.
31.
Guo
,
Z.
, and
Kirk
,
G.
,
2011
, “
Morton Effect Induced Synchronous Instability in Mid-Span Rotor–Bearing Systems, Part 2: Models and Simulations
,”
ASME J. Vib. Acoust.
,
133
(
6
), p.
061006
.
32.
Lorenz
,
J.
, and
Murphy
,
B.
,
2011
, “
Case Study of Morton Effect Shaft Differential Heating in a Variable-Speed Rotating Electric Machine
,” ASME Paper NO. GT2011-45228.
33.
Tong
,
X.
, and
Palazzolo
,
A.
,
2017
, “
Measurement and Prediction of the Journal Circumferential Temperature Distribution for the Rotordynamic Morton Effect
,”
ASME J. Tribol.
,
140
(
3
), p.
031702
.
34.
Hresko
,
A.
,
Shin
,
D.
, and
Palazzolo
,
A. B.
,
2019
, “
Experimental Investigation of Morton Effect (Thermally Induced Rotor Instability)
,” ASME Paper No. GT2019-92281.
35.
Plantegenet
,
T.
,
Arghir
,
M.
,
Hassini
,
M. A.
, and
Jolly
,
P.
,
2020
, “
The Thermal Unbalance Effect Induced by a Journal Bearing in Rigid and Flexible Rotors: Experimental Analysis
,”
Tribol. Trans.
,
63
(
1
), pp.
52
67
.
36.
Plantegenet
,
T.
,
Arghir
,
M.
, and
Jolly
,
P.
,
2020
, “
Experimental Analysis of the Thermal Unbalance Effect of a Flexible Rotor Supported by a Flexure Pivot Tilting Pad Bearing
,”
Mech. Syst. Signal Process.
,
145
, p.
106
.
37.
Plantegenet
,
T.
,
2019
, “
Analyse Expérimentale de L'effet Morton
,”
PhD dissertation, Université de Poitiers, Poitiers
.
38.
Walton
,
N. V.
, and
San Andres
,
L.
,
1997
, “
Measurements of Static Loading Versus Eccentricity in a Flexure-Pivot Tilting Pad Journal Bearing
,”
ASME J. Tribol.
,
119
(
2
), pp.
297
304
.
39.
Rodriguez
,
L. E.
, and
Childs
,
D. W.
,
2005
, “
Frequency Dependency of Measured and Predicted Rotordynamic Coefficients for a Load-On-Pad Flexible-Pivot Tilting-Pad Bearing
,”
ASME J. Tribol.
,
128
(
2
), pp.
388
395
.
40.
Al-Ghasem
,
A. M.
, and
Childs
,
D. W.
,
2005
, “
Rotordynamic Coefficients Measurements Versus Predictions for a High-Speed Flexure-Pivot Tilting-Pad Bearing (Load-Between-Pad Configuration)
,”
ASME J. Eng. Gas Turbines Power
,
128
(
4
), pp.
896
906
.
41.
Hensley
,
J. E.
, and
Childs
,
D.
,
2008
, “
Measurements Versus Predictions for Rotordynamic Characteristics of a Flexure Pivot-Pad Tilting Pad Bearing in an LBP Condition at Higher Unit Loads
,” ASME Paper No. GT2008-50066.
42.
Vannini
,
G.
,
Cangioli
,
F.
,
Ciulli
,
E.
,
Nuti
,
M.
,
Forte
,
P.
,
Kim
,
J.
, and
Livermore-Hardy
,
R.
,
2020
, “
Experiments on a Large Flexure Pivot Journal Bearing: Summary of Test Results and Comparison With Predictions
,”
ASME J. Eng. Gas Turbines Power
,
142
(
3
), p.
031004
.
43.
Armentrout
,
R. W.
, and
Paquette
,
D. J.
,
1993
, “
Rotordynamic Characteristics of Flexure-Pivot Tilting-Pad Journal Bearings
,”
Tribol. Trans.
,
36
(
3
), pp.
443
451
.
44.
Chen
,
W. J.
,
1995
, “
Bearing Dynamic Coefficients of Flexible-Pad Journal Bearings
,”
Tribol. Trans.
,
38
(
2
), pp.
253
260
.
45.
San Andres
,
L.
,
1996
, “
Turbulent Flow, Flexure-Pivot Hybrid Bearings for Cryogenic Applications
,”
ASME J. Tribol.
,
118
(
1
), pp.
190
200
.
46.
Kim
,
T. H.
,
Jang
,
K. E.
, and
Choi
,
T. G.
,
2016
, “
Rotordynamics Performance Predictions of Flexure Pivot Tilting Pad Bearings and Comparison to Published Test Data
,” ASME Paper No. GT2016-56284.
47.
Suh
,
J.
,
Palazzolo
,
A.
, and
Choi
,
Y.
,
2017
, “
Numerical Modeling and Analysis of Flexure-Pivot Tilting-Pad Bearing
,”
ASME J. Tribol.
,
139
(
5
), p.
051704
.
48.
Sim
,
K.
, and
Kim
,
D.
,
2006
, “
Design of Flexure Pivot Tilting Pads Gas Bearings for High-Speed Oil-Free Microturbomachinery
,”
ASME J. Tribol.
,
129
(
1
), pp.
112
119
.
49.
Sim
,
K.
, and
Kim
,
D.
,
2008
, “
Thermohydrodynamic Analysis of Compliant Flexure Pivot Tilting Pad Gas Bearings
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
032502
.
50.
Dang
,
P. V.
,
Chatterton
,
S.
, and
Pennacchi
,
P.
,
2019
, “
The Effect of the Pivot Stiffness on the Performances of Five-Pad Tilting Pad Bearings
,”
Lubricants
,
7
(
7
), p.
61
.
You do not currently have access to this content.