Abstract

Accurate prediction of the frictional moment of the bearing contributes to the correct determination of the power loss in drivetrains and the antifriction design of bearings. This paper investigates a method for accurately predicting the frictional moment of the cylindrical roller bearing (CRB) under a wide range of operating conditions. The complex relationship between the bearing frictional moment and multiple operating parameters such as the shaft speed, roller–raceway contact load, cage slip ratio and lubricating property is established using an experimental data-driven artificial neural network (ANN) model. To provide actual data for training and testing the ANN model, the frictional moment and multiple operating parameters of the test CRB are synchronously measured under many test conditions. Compared with the prediction results from conventional physical models, the experimental data-driven ANN model reveals a higher prediction performance of the frictional moment.

References

1.
Ta
,
W.
,
Qiu
,
S.
,
Wang
,
Y.
,
Yuan
,
J.
,
Gao
,
Y.
, and
Zhou
,
Y.
,
2021
, “
Volumetric Contact Theory to Electrical Contact Between Random Rough Surfaces
,”
Tribol. Int.
,
160
, p.
107007
.
2.
Matsuyama
,
H.
,
Dodoro
,
H.
,
Ogino
,
K.
,
Ohshima
,
H.
, and
Toda
,
K.
,
2004
, “Development of Super-Low Friction Torque Tapered Roller Bearing for Improved Fuel Efficiency,” SAE Technical Paper Series No. 2004-01-2674.
3.
Csobán
,
A.
, and
Kozma
,
M.
,
2010
, “
Influence of the Oil Churning, the Bearing and the Tooth Friction Losses on the Efficiency of Planetary Gears
,”
Stroj. Vestnik/Journal Mech. Eng.
,
56
(
4
), pp.
231
238
.
4.
Biboulet
,
N.
, and
Houpert
,
L.
,
2010
, “
Hydrodynamic Force and Moment in Pure Rolling Lubricated Contacts. Part 1: Line Contacts
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
224
(
8
), pp.
765
775
.
5.
Masjedi
,
M.
, and
Khonsari
,
M. M.
,
2013
, “
Theoretical and Experimental Investigation of Traction Coefficient in Line-Contact EHL of Rough Surfaces
,”
Tribol. Int.
,
70
, pp.
179
189
.
6.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2007
,
Rolling Bearing Analysis: Advanced Concepts of Bearing Technology
, 5th ed.,
Taylor & Francis
,
Boca Raton, FL
.
7.
Selvaraj
,
A.
, and
Marappan
,
R.
,
2011
, “
Experimental Analysis of Factors Influencing the Cage Slip in Cylindrical Roller Bearing
,”
Int. J. Adv. Manuf. Technol.
,
53
, pp.
635
644
.
8.
Palmgren
,
A.
,
1959
,
Ball and Roller Bearing Engineering
, 3rd ed.,
S. H. Burbank
,
Philadelphia, PA
.
9.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2007
,
Rolling Bearing Analysis: Essential Concepts of Bearing Technology
, 5th ed,
Taylor & Francis
,
Boca Raton, FL
.
10.
NSK Ltd.
,
2016
, “Rolling Bearings for Industrial Machinery.”
11.
The Timken Company
,
2017
, “Timken Engineering Manual,”, The Timken Company.
12.
ISO Standard
,
2018
, “ISO 15312:2018 Rolling Bearings—Thermal Speed Rating—Calculation”.
13.
Witte
,
D. C.
,
1973
, “
Operating Torque of Tapered Roller Bearings
,”
ASLE Trans.
,
16
(
1
), pp.
61
67
.
14.
Matsuyama
,
H.
,
Kamamoto
,
S.
, and
Asano
,
K.
,
1998
, “The Analysis of Frictional Torque for Tapered Roller Bearings Using EHD Theory,” SAE Technical Paper Series No. 982029. 10.4271/982029.
15.
Aihara
,
S.
,
1987
, “
A New Running Torque Formula for Tapered Roller Bearings Under Axial Load
,”
ASME J. Tribol.
,
109
(
3
), pp.
471
477
.
16.
Zhou
,
R. S.
, and
Hoeprich
,
M. R.
,
1991
, “
Torque of Tapered Roller Bearings
,”
ASME J. Tribol.
,
113
(
3
), pp.
590
597
.
17.
Dowson
,
D.
, and
Higginson
,
G.
,
1977
,
Elasto-Hydrodynamic Lubrication, A Volume in International Series on Materials Science and Technology
,
Pergamon Press
,
Oxford, UK
.
18.
Houpert
,
L.
,
1985
, “
Fast Numerical Calculations of EHD Sliding Traction Forces; Application to Rolling Bearings
,”
ASME J. Tribol.
,
107
(
2
), pp.
234
239
.
19.
Houpert
,
L.
,
1987
, “
Piezoviscous-Rigid Rolling and Sliding Traction Forces, Application: The Rolling Element-Cage Pocket Contact
,”
ASME J. Tribol.
,
109
(
2
), pp.
363
370
.
20.
SKF
,
2018
, “Rolling Bearings Catalogue,” 17000 EN, SKF Gr.
21.
Guo
,
Y.
, and
Keller
,
J.
,
2020
, “
Validation of Combined Analytical Methods to Predict Slip in Cylindrical Roller Bearings
,”
Tribol. Int.
,
148
, p.
106347
.
22.
Schaeffler Group
,
2011
, “BEARINX—Online Easy Friction: Detailed Friction Calculations for Rolling Bearings”.
23.
Kim
,
H. J.
,
Park
,
I. K.
,
Seo
,
Y. H.
,
Kim
,
B. H.
, and
Hong
,
N. P.
,
2014
, “
Wire Tension Method for Coefficient of Friction Measurement of Micro Bearing
,”
Int. J. Precis. Eng. Manuf.
,
15
(
2
), pp.
267
273
.
24.
Fotso
,
H. R. F.
,
Kazé
,
C. V. A.
, and
Kenmoé
,
G. D.
,
2021
, “
Real-Time Rolling Bearing Power Loss in Wind Turbine Gearbox Modeling and Prediction Based on Calculations and Artificial Neural Network
,”
Tribol. Int.
,
163
, p.
107171
.
25.
Meng
,
F.
,
Gong
,
J.
,
Yang
,
S.
,
Huang
,
L.
,
Zhao
,
H.
, and
Tang
,
X.
,
2021
, “
Study on Tribo-Dynamic Behaviors of Rolling Bearing-Rotor System Based on Neural Network
,”
Tribol. Int.
,
156
, p.
106829
.
26.
Fogno Fotso
,
H. R.
,
Aloyem Kazé
,
C. V.
, and
Kenmoe
,
G. D.
,
2020
, “
Optimal Input Variables Disposition of Artificial Neural Networks Models for Enhancing Time Series Forecasting Accuracy
,”
Appl. Artif. Intell.
,
34
, pp.
792
815
.
27.
ISO Standard
,
2020
, “ISO 3104:2020 Petroleum Products—Transparent and Opaque Liquids—Determination of Kinematic Viscosity and Calculation of Dynamic Viscosity”.
28.
Hou
,
Y.
, and
Wang
,
X.
,
2020
, “
Development of an Experimental System to Measure the Cage Slip of Cylindrical Roller Bearing
,”
Struct. Heal. Monit.
,
19
(
2
), pp.
510
519
.
29.
Hou
,
Y.
, and
Wang
,
X.
,
2021
, “
Measurement of Load Distribution in a Cylindrical Roller Bearing With an Instrumented Housing: Finite Element Validation and Experimental Study
,”
Tribol. Int.
,
155
, p.
106785
.
30.
Hou
,
Y.
,
Wang
,
X.
,
Que
,
H.
,
Guo
,
R.
,
Lin
,
X.
,
Jin
,
S.
,
Wu
,
C.
,
Zhou
,
Y.
, and
Liu
,
X.
,
2021
, “
Variation in Contact Load at the Most Loaded Position of the Outer Raceway of a Bearing in High-Speed Train Gearbox
,”
Acta Mech. Sin.
,
37
(
11
), pp.
1685
1697
.
31.
Lecun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
, pp.
436
444
.
32.
Nair
,
V.
, and
Hinton
,
C. E.
,
2010
, “
Rectified Linear Units Improve Restricted Boltzmann Machines
,”
Proceedings of the 27th International Conference on Machine Learning
,
Haifa, Israel
,
June 21–24
, pp.
807
814
.
33.
Kingma
,
D. P.
, and
Ba
,
J. L.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
Proceedings of the 3rd International Conference on Learning Representations
,
San Diego, CA
,
May 7–9
,
p. 1412.6980
.
34.
Al-Badour
,
F.
,
Sunar
,
M.
, and
Cheded
,
L.
,
2011
, “
Vibration Analysis of Rotating Machinery Using Time-Frequency Analysis and Wavelet Techniques
,”
Mech. Syst. Signal Process.
,
25
(
6
), pp.
2083
2101
.
35.
Ren
,
X.
,
Zhai
,
J.
, and
Ren
,
G.
,
2017
, “
Calculation of Radial Load Distribution on Ball and Roller Bearings With Positive, Negative and Zero Clearance
,”
Int. J. Mech. Sci.
,
131–132
, pp.
1
7
.
36.
O’Brien
,
K. T.
, and
Taylor
,
C. M.
,
1973
, “
Cage Slip in Roller Bearings
,”
J. Mech. Eng. Sci.
,
15
(
5
), pp.
370
378
.
37.
Harris
,
T. A.
,
1966
, “
An Analytical Method to Predict Skidding in High Speed Roller Bearings
,”
ASLE Trans.
,
9
(
3
), pp.
229
241
.
38.
Nicholas
,
G.
,
Howard
,
T.
,
Long
,
H.
,
Wheals
,
J.
, and
Dwyer-Joyce
,
R. S.
,
2020
, “
Measurement of Roller Load, Load Variation, and Lubrication in a Wind Turbine Gearbox High Speed Shaft Bearing in the Field
,”
Tribol. Int.
,
148
, p.
106322
.
39.
Petrovska
,
B.
,
Zdravevski
,
E.
,
Lameski
,
P.
,
Corizzo
,
R.
,
Štajduhar
,
I.
, and
Lerga
,
J.
,
2020
, “
Deep Learning for Feature Extraction in Remote Sensing: A Case-Study of Aerial Scene Classification
,”
Sensors
,
20
(
14
), p.
3906
.
40.
Hammami
,
M.
,
Martins
,
R.
,
Fernandes
,
C.
,
Seabra
,
J.
,
Abbes
,
M. S.
, and
Haddar
,
M.
,
2018
, “
Friction Torque in Rolling Bearings Lubricated With Axle Gear Oils
,”
Tribol. Int.
,
119
, pp.
419
435
.
You do not currently have access to this content.