Abstract

Metal rubber (MR) is a kind of elastic porous material with a complex and disordered internal structure, which results in wear characteristics that can only rely on tests but cannot meet the engineering application. This paper presents an exciting method for studying wear characteristics based on its virtual fabrication technology. By developing the intricate internal multipoint random contact mesh model of MR, a virtual real-time dynamic tracking contact point in a different state is captured. A thorough investigation is conducted into the contact point properties, point distribution, and the interaction of discrete contact points in MR interior space. Accordingly, a cross-scale micro-motion wear study method from micromorphology to macroscopic performance is proposed. The continuous wear cycle of MR is discretized into multiple single-turn metal wire elements by applying the principle of equal spacing. A statistical model of internal contact point wear of MR at the microlayer is developed considering the metal wire’s single-turn fretting wear prediction model. The cumulative prediction model of macroscopic wear damage of MR is based on the superposition of micro-element interval. Finally, the difference between the mass loss and that obtained from the simulation analysis after performing dynamic loading tests at different cycles was studied and found to be insignificant.

References

1.
Li
,
Z.
,
2000
,
Design of Metal Rubber Components
,
National Defense Industry Press
,
Beijing
.
2.
Bai
,
H.
,
2014
,
Metal Rubber Materials and Engineering Applications
,
Science Press
,
Beijing
.
3.
Xuan
,
F.
,
Zhu
,
M.
, and
Wang
,
G.
,
2021
, “
Review and Prospect of Centennial Research on Structural Fatigue
,”
J. Mech. Eng.
,
57
(
6
), pp.
26
51
.
4.
Dong
,
X.
,
Liu
,
G.
,
Yang
,
J.
, and
Bai
,
H.
,
2009
, “
Causes of Fatigue Fracture of Stainless Steel Wire in Metal-Rubber Vibration Isolation Members
,”
Mech. Eng. Mater.
,
33
(
4
), pp.
35
38+42
.
5.
Dong
,
X.
,
Liu
,
G.
,
Niu
,
L.
,
Bai
,
H.
, and
Yang
,
J.
,
2008
, “
Study of Micro-Motion Friction Wear Performance of Stainless Steel Wire in Metal-Rubber Vibration Isolators
,”
J. Tribol.
,
3
, pp.
248
253
.
6.
Hou
,
J.
,
Bai
,
H.
,
Li
,
D.
,
Wang
,
Y.
, and
Tao
,
S.
,
2007
, “
Experimental Study on Fatigue Properties of Fatigue Materials Under High and Low Temperature Environment
,”
Aerosp. Mater. Technol.
,
2
, pp.
77
80
.
7.
Huang
,
M. J.
,
Li
,
B.
,
Dong
,
X. P.
, and
Qiao
,
S. X.
,
2021
, “
Effect of Wire Diameter on the Frictional Wear Behavior of 316L Stainless Steel Wire
,”
J. Tribol.
,
41
(
2
), pp.
206
212
.
8.
Shen
,
Y.
,
Zhang
,
D.
,
Wang
,
D.
, and
Xu
,
L.
,
2010
, “
Study on the Effect of Contact Load on the Microwear Behavior of Steel Wire
,”
J. Tribol.
,
30
(
4
), pp.
404
408
.
9.
Cruzado
,
A.
,
Hartelt
,
M.
,
Wäsche
,
R.
,
Urchegui
,
M. A.
, and
Gómez
,
X.
,
2010
, “
Fretting Wear of Thin Steel Wires. Part 1: Influence of Contact Pressure
,”
Wear
,
268
(
11–12
), pp.
1409
1416
.
10.
Zhang
,
D. K.
,
Ge
,
S. R.
, and
Xiong
,
D. S.
,
2001
, “
Study on the Micro-Motion Wear Behavior of Hoisting Wire Rope for Mine Hoist
,”
J. Tribol.
,
5
, pp.
362
365
.
11.
Wang
,
D. G.
,
2012
, “
Research on Micro-Motion Damage Behavior of Steel Wire and Its Micro-Motion Fatigue Life Prediction
,”
China University of Mining and Technology
,
Beijing, China
.
12.
Cruzado
,
A.
,
Hartelt
,
M.
,
Wäsche
,
R.
,
Urchegui
,
M. A.
, and
Gómez
,
X.
,
2011
, “
Fretting Wear of Thin Steel Wires. Part 2: Influence of Crossing Angle
,”
Wear
,
273
(
1
), pp.
60
69
.
13.
Yin
,
Y.
,
Zhang
,
D.
, and
Shen
,
Y.
,
2011
, “
Influence of Lubricating Grease on the Micro-Abrasive Properties of Steel Wire
,”
J. Tribol.
,
31
(
5
), pp.
492
497
.
14.
Cruzado
,
A.
,
Urchegui
,
M. A.
, and
Gómez
,
X.
,
2014
, “
Finite Element Modeling of Fretting Wear Scars in the Thin Steel Wires: Application in Crossed Cylinder Arrangements
,”
Wear
,
318
(
1–2
), pp.
98
105
.
15.
Cruzado
,
A.
,
Leen
,
S. B.
,
Urchegui
,
M. A.
, and
Gómez
,
X.
,
2013
, “
Finite Element Simulation of Fretting Wear and Fatigue in Thin Steel Wires
,”
Int. J. Fatigue
,
55
, pp.
7
21
.
16.
Cruzado
,
A.
,
Urchegui
,
M. A.
, and
Gómez
,
X.
,
2012
, “
Finite Element Modeling and Experimental Validation of Fretting Wear Scars in Thin Steel Wires
,”
Wear
,
289
, pp.
26
38
.
17.
Out
,
J. M. M.
, and
von Morgen
,
B. J.
,
1997
, “
Slippage of Helical Reinforcing on a Bent Cylinder
,”
Eng. Struct.
,
19
(
6
), pp.
507
515
.
18.
Shi
,
L.
,
Ren
,
Z.
,
Bai
,
H.
,
Shen
,
L.
,
Lin
,
Y.
,
Wang
,
Z.
, and
Huang
,
W.
,
2022
, “
Mechanical Behavior of Metal Seals With the Disordered Entangled Stainless-Steel Wire as Core
,”
Mech. Adv. Mater. Struct.
,
30
(
2
), pp.
303
318
.
19.
Ren
,
Z.
,
Fang
,
R.
,
Chen
,
X.
,
Shen
,
L.
,
Bai
,
H.
, and
Lin
,
Y.
,
2022
, “
Study on Anisotropic Constitutive Characteristics of Metal Rubber Based on Virtual Preparation
,”
J. Mech. Eng.
,
50
(
1
), pp.
89
96
.
20.
Huang
,
K.
,
Bai
,
H.
,
Lu
,
C.
, and
Cao
,
F.
,
2016
, “
Numerical Simulation Analysis of Metal Rubber Stamping Forming
,”
Rare Met. Mater. Eng.
,
45
, p.
681
.
21.
Ren
,
Z.
,
Shen
,
L.
,
Bai
,
H.
,
Pan
,
L.
, and
Zhong
,
S.
,
2021
, “
Constitutive Model of Disordered Grid Interpenetrating Structure of Flexible Microporous Metal Rubber
,”
Mech. Syst. Signal Process.
,
154
, p.
107567
.
22.
Ma
,
Y.
,
Zhang
,
Q.
,
Zhang
,
D.
,
Fabrizio
,
S.
,
Liu
,
B.
, and
Hong
,
J.
,
2015
, “
The Mechanics of Shape Memory Alloy Metal Rubber
,”
Acta Mater.
,
96
, pp.
89
100
.
23.
Schijve
,
J.
,
2003
, “
Fatigue of Structures and Materials in the 20th Century and the State of the Art
,”
Int. J. Fatigue
,
25
(
8
), pp.
679
702
.
24.
Ren
,
Z.
,
Shen
,
L.
,
Huang
,
Z.
,
Bai
,
H.
,
Shen
,
D.
, and
Shao
,
Y.
,
2019
, “
Study on Multi-Point Random Contact Characteristics of Metal Rubber Spiral Mesh Structure
,”
IEEE Access
,
7
, pp.
132694
132710
.
25.
Cho
,
C.-N.
,
Kim
,
J.-H.
,
Kim
,
Y.-L.
,
Song
,
J.-B.
, and
Kyung
,
J.-H.
,
2012
, “
Collision Detection Algorithm to Distinguish Between Intended Contact and Unexpected Collision
,”
Adv. Rob.
,
26
(
16
), pp.
1825
1840
.
26.
Nour-Omid
,
B.
, and
Wriggers
,
P.
,
1986
, “
A Two-Level Iteration Method for Solution of Contact Problems
,”
Comput. Methods Appl. Mech. Eng.
,
54
(
2
), pp.
131
144
.
27.
Li
,
H.
,
Ren
,
Z.
,
Huang
,
J.
, and
Zhong
,
S.
,
2022
, “
Fretting Wear Evolution Model of the Metal Filaments Inside Metal Rubber
,”
Wear
,
506–507
, pp.
506
507
.
28.
Argatov
,
I. I.
,
Gómez
,
X.
,
Tato
,
W.
, and
Urchegui
,
M. A.
,
2011
, “
Wear Evolution in a Stranded Rope Under Cyclic Bending: Implications to Fatigue Life Estimation
,”
Wear
,
271
(
11
), p.
2857
.
29.
Xiao
,
D.
,
Ren
,
Z.
,
Huang
,
J.
,
Li
,
H.
,
Lu
,
C.
, and
Wang
,
Q.
,
2022
, “
Study on Fretting Wear Prediction Model of Spiral Metal Wire in Metal Rubber
,”
Lubr. Eng.
,
48
(
1
), pp.
56
65
.
30.
Ma
,
Y.
,
Zhang
,
Q.
,
Wang
,
Y.
,
Hogn
,
J.
, and
Fabrizio
,
S.
,
2019
, “
Topology and Mechanics of Metal Rubber Via X-Ray Tomography
,”
Mater. Des.
,
181
(
C
), pp.
108067
108067
.
31.
Shen
,
L.
,
Ren
,
Z.
,
Xu
,
J.
,
Pan
,
L.
,
Lin
,
Y.
, and
Bai
,
H.
,
2022
, “
Dry Friction Damping Mechanism of Flexible Microporous Metal Rubber Based on Cell Group Energy Dissipation Mechanism
,”
Friction
,
11
(
2
), pp.
259
279
.
You do not currently have access to this content.