Graphical Abstract Figure

(a)–(d) Contact surface of 3D printed (cylindrical) samples with varying infill densities

Graphical Abstract Figure

(a)–(d) Contact surface of 3D printed (cylindrical) samples with varying infill densities

Close modal

Abstract

Additive manufacturing revolutionizes component and part creation, offering unmatched flexibility and reducing production time. This innovation, especially significant with semicrystalline polymers like polyetheretherketone (PEEK) at high temperatures, expands applications, including sleeves and bushes. PEEK's mechanical and tribological properties make it an attractive long-term metal replacement. However, the 3D printed PEEK surface is pivotal, and the surface structure depends on infill density, which influences its response to sliding conditions, such as speed, load, and test duration. The PEEK structure's surface patterns facilitate lubricant accommodation, particularly during boundary lubrication tests, affecting the formation of a transfer layer. Surface properties directly impact friction in 3D printed PEEK against the counterbody. Lubrication decreases friction coefficients compared to dry conditions. Wear tests show that 3D printed PEEK parts outperform extruded rod samples, displaying superior wear resistance. Surface texture and properties directly affect contact characteristics and lubricant storage. In journal bearings, varying infill percentages create surface voids, efficiently accommodating polyalphaolefin (PAO)-based grease in PEEK-based applications where oil is not preferred for sliding operations.

References

1.
Nascimento
,
A. R. C.
,
Chromik
,
R. R.
, and
Schulz
,
R.
,
2021
, “
Mechanical Properties and Wear Resistance of Industrial Bearing Liners in Concentrated Boundary-Lubricated Sliding
,”
Wear
,
477
, p.
203806
.
2.
Quadrini
,
F.
, and
Squeo
,
E. A.
,
2007
, “
Injection Molding of Bushes Made of Tribological PEEK Composites
,”
Express Polym. Lett.
,
1
(
12
), pp.
817
823
.
3.
Zalaznik
,
M.
,
Kalin
,
M.
, and
Novak
,
S.
,
2016
, “
Influence of the Processing Temperature on the Tribological and Mechanical Properties of Poly-Ether-Ether-Ketone (PEEK) Polymer
,”
Tribol. Int.
,
94
, pp.
92
97
.
4.
Pei
,
X. Q.
,
Lin
,
L.
,
Schlarb
,
A. K.
, and
Bennewitz
,
R.
,
2019
, “
Correlation of Friction and Wear Across Length Scales for PEEK Sliding Against Steel
,”
Tribol. Int.
,
136
(
August
), pp.
462
468
.
5.
Schroeder
,
R.
,
Torres
,
F. W.
,
Binder
,
C.
,
Klein
,
A. N.
, and
De Mello
,
J. D. B.
,
2013
, “
Failure Mode in Sliding Wear of PEEK Based Composites
,”
Wear
,
301
(
1–2
), pp.
717
726
.
6.
Wang
,
Q.
,
Wang
,
Y.
,
Wang
,
H.
,
Fan
,
N.
, and
Yan
,
F.
,
2016
, “
Experimental Investigation on Tribological Behavior of Several Polymer Materials Under Reciprocating Sliding and Fretting Wear Conditions
,”
Tribol. Int.
,
104
, pp.
73
82
.
7.
Yang
,
Z.
,
Peng
,
H.
,
Wang
,
W.
, and
Liu
,
T
,
2010
, “
Crystallization Behavior of Poly(ε-caprolactone)/Layered Double Hydroxide Nanocomposites
,”
J. Appl. Polym. Sci.
,
116
(
5
), pp.
2658
2667
.
8.
Doumeng
,
M.
,
Ferry
,
F.
,
Delbé
,
K.
,
Mérian
,
T.
,
Chabert
,
F.
,
Berthet
,
F.
,
Marsan
,
O.
,
Nassiet
,
V.
, and
Denape
,
J.
,
2019
, “
Evolution of Crystallinity of PEEK and Glass-Fibre Reinforced PEEK Under Tribological Conditions Using Raman Spectroscopy
,”
Wear
,
426–427
, pp.
1040
1046
.
9.
Zalaznik
,
M.
,
Kalin
,
M.
,
Novak
,
S.
, and
Jakša
,
G.
,
2016
, “
Effect of the Type, Size and Concentration of Solid Lubricants on the Tribological Properties of the Polymer PEEK
,”
Wear
,
364–365
, pp.
31
39
.
10.
Nadermann
,
D.
,
Dietrich
,
P.
,
Korn
,
G.
, and
Schwarze
,
H.
,
2017
, “
Tribological Behavior of Short Carbon Fibre Reinforced PEEK Under Diesel Lubrication
,”
World Tribology Congress
,
Beijing, China
,
Sept. 17– 22,
, pp.
1
5
.
11.
Tatsumi
,
G.
,
Ratoi
,
M.
,
Shitara
,
Y.
,
Hasegawa
,
S.
,
Sakamoto
,
K.
, and
Mellor
,
B. G.
,
2021
, “
Mechanism of Oil-Lubrication of PEEK and Its Composites With Steel Counterparts
,”
Wear
,
486–487
, p.
204085
.
12.
Tatsumi
,
G.
,
Ratoi
,
M.
,
Shitara
,
Y.
,
Sakamoto
,
K.
, and
Mellor
,
B. G.
,
2020
, “
Effect of Organic Friction Modifiers on Lubrication of PEEK-Steel Contact
,”
Tribol. Int.
,
151
, p.
106513
.
13.
Tatsumi
,
G.
,
Ratoi
,
M.
,
Shitara
,
Y.
,
Sakamoto
,
K.
, and
Mellor
,
B. G.
,
2019
, “
Effect of Lubrication on Friction and Wear Properties of PEEK With Steel Counterparts
,”
Tribol. Online
,
14
(
5
), pp.
345
352
.
14.
Jia
,
J.
,
Chen
,
J.
,
Zhou
,
H.
, and
Hu
,
L.
,
2004
, “
Comparative Study on Tribological Behaviors of Polyetheretherketone Composite Reinforced With Carbon Fiber and Polytetrafluoroethylene Under Water-Lubricated and Dry-Sliding Against Stainless Steel
,”
Tribol. Lett.
,
17
(
2
), pp.
231
238
.
15.
Loy
,
X. Z. K.
, and
Sinha
,
S. K.
,
2012
, “
Lubrication of Polyether Ether Ketone (PEEK) Surface by Liquid Ultrathin Films for High Wear Durability
,”
Wear
,
296
(
1–2
), pp.
681
692
.
16.
Akagaki
,
T.
, and
Kawabata
,
M.
,
2016
, “
Effects of Counterface Surface Roughness on Friction and Wear of PEEK Materials Under Oil-Lubricated Conditions
,”
Tribol. Online
,
11
(
3
), pp.
494
502
.
17.
De Andrade
,
T. F.
,
Wiebeck
,
H.
, and
Sinatora
,
A.
,
2016
, “
Effect of Surface Finishing on Friction and Wear of Poly-Ether-Ether-Ketone (PEEK) Under Oil Lubrication
,”
Polimeros
,
26
(
4
), pp.
336
342
.
18.
Kunishima
,
T.
,
Nagai
,
Y.
,
Kurokawa
,
T.
,
Bouvard
,
G.
,
Abry
,
J.-C.
,
Fridrici
,
V.
, and
Kapsa
,
P.
,
2020
, “
Tribological Behavior of Glass Fiber Reinforced-PA66 in Contact With Carbon Steel Under High Contact Pressure, Sliding and Grease Lubricated Conditions
,”
Wear
,
456–457
, p.
203383
.
19.
Kunishima
,
T.
,
Nagai
,
Y.
,
Bouvard
,
G.
,
Abry
,
J. C.
,
Fridrici
,
V.
, and
Kapsa
,
P.
,
2021
, “
Comparison of the Tribological Properties of Carbon/Glass Fiber Reinforced PA66-Based Composites in Contact With Steel, With and Without Grease Lubrication
,”
Wear
,
477
, p.
203899
.
20.
Kunishima
,
T.
,
Nagai
,
S.
,
Kurokawa
,
T.
,
Galipaud
,
J.
,
Guillonneau
,
G.
,
Bouvard
,
G.
,
Abry
,
J.-Ch.
,
Minfray
,
C.
,
Fridrici
,
V.
, and
Kapsa
,
Ph.
,
2021
, “
Effects of Temperature and Addition of Zinc Carboxylate to Grease on the Tribological Properties of PA66 in Contact With Carbon Steel
,”
Tribol. Int.
,
153
, p.
106578
.
21.
Wang
,
H.
,
Liu
,
D.
,
Yan
,
L.
,
Wang
,
C.
,
Yang
,
S.
, and
Zhu
,
Y.
,
2021
, “
Tribological Simulation of Porous Self-lubricating PEEK Composites With Heat-Stress Coupled Field
,”
Tribol. Int.
,
77
, pp.
43
49
.
22.
Zhu
,
Y.
,
Lin
,
S.
,
Wang
,
H.
, and
Liu
,
D.
,
2014
, “
Study on the Tribological Properties of Porous Sweating PEEK Composites Under Ionic Liquid Lubricated Condition
,”
J. Appl. Polym. Sci.
,
131
(
21
), pp.
6
11
.
23.
Massocchi
,
D.
,
Riboni
,
G.
,
Lecis
,
N.
,
Chatterton
,
S.
, and
Pennacchi
,
P.
,
2021
, “
Tribological Characterization of Polyether Ether Ketone (PEEK) Polymers Produced by Additive Manufacturing for Hydrodynamic Bearing Application
,”
Lubricants
,
9
(
11
), p.
112
.
24.
Dhakal
,
N.
,
Espejo
,
C.
,
Morina
,
A.
, and
Emami
,
N.
,
2024
, “
Tribological Performance of 3D Printed Neat and Carbon Fiber Reinforced PEEK Composites
,”
Tribol. Int.
,
193
, p.
109356
.
25.
Chithambaram
,
K.
, and
Senthilnathan
,
N.
,
2024
, “
Effects of Printing Parameters on Hardness and Wear Characteristics of 3D Printed Polyetheretherketone (PEEK) Polymer
,”
Mater. Lett.
,
356
, p.
135588
.
26.
He
,
Y.
,
Shen
,
M.
,
Wang
,
Q.
,
Wang
,
T.
, and
Pei
,
X.
,
2023
, “
Effects of FDM Parameters and Annealing on the Mechanical and Tribological Properties of PEEK
,”
Compos. Struct.
,
313
, p.
116901
.
27.
Limaye
,
N.
,
Veschini
,
L.
, and
Coward
,
T.
,
2022
, “
Assessing Biocompatibility & Mechanical Testing of 3D-Printed PEEK Versus Milled PEEK
,”
Heliyon
,
8
(
12
), p.
e12314
.
28.
Al Khatib
,
A.
,
Le-Franc
,
R.
,
Guin
,
J. P.
, and
Coulon
,
J. F.
,
2023
, “
Investigating the Thermal Effects of Plasma Surface Treatment on Crystallinity and Mechanical Behavior of PEEK
,”
Polym. Degrad. Stab.
,
216
, pp.
1
14
.
29.
Mei
,
S.
,
Yang
,
L.
,
Pan
,
Y.
,
Wang
,
D.
,
Wang
,
X.
,
Tang
,
T.
, and
Wei
,
J.
,
2019
, “
Influences of Tantalum Pentoxide and Surface Coarsening on Surface Roughness, Hydrophilicity, Surface Energy, Protein Adsorption and Cell Responses to PEEK Based Biocomposite
,”
Colloids Surf. B
,
174
, pp.
207
215
.
30.
Zhang
,
L.
,
Li
,
G.
,
Guo
,
Y.
,
Qi
,
H.
,
Che
,
Q.
, and
Zhang
,
G.
,
2018
, “
PEEK Reinforced With Low-Loading 2D Graphitic Carbon Nitride Nanosheets: High Wear Resistance Under Harsh Lubrication Conditions
,”
Composites Part A
,
109
, pp.
507
516
.
31.
Zhang
,
G.
,
Wetzel
,
B.
, and
Wang
,
Q.
,
2015
, “
Tribological Behavior of PEEK-Based Materials Under Mixed and Boundary Lubrication Conditions
,”
Tribol. Int.
,
88
, pp.
153
161
.
32.
Guo
,
L.
,
Pei
,
X.
,
Zhao
,
F.
,
Zhang
,
L.
,
Li
,
G.
, and
Zhang
,
G.
,
2020
, “
Tribofilm Growth at Sliding Interfaces of PEEK Composites and Steel at Low Velocities
,”
Tribol. Int.
,
151
, p.
106456
.
33.
Dezaki
,
M. L.
,
Ariffin
,
M. K. A. M.
,
Serjouei
,
A.
,
Zolfagharian
,
A.
,
Hatami
,
S.
, and
Bodaghi
,
M.
,
2021
, “
Influence of Infill Patterns Generated by CAD and FDM 3d Printer on Surface Roughness and Tensile Strength Properties
,”
Appl. Sci.
,
11
(
16
), p.
7272
.
You do not currently have access to this content.