Abstract

Friction and wear between mating surfaces significantly affect the efficiency and performance of mechanical systems. Traditional tribological research relies on post-observation methods, limiting the understanding of dynamic friction behavior. In contrast, in situ monitoring provides real-time insights into evolving friction dynamics. This study employs machine learning to monitor polymer wear performance through friction noise. The predictive accuracy of various machine learning methods, including Extremely Randomized Trees, Gradient-Boosting Decision Trees, AdaBoost, LightGBM, Deep Forest, and Deep Neural Networks, is compared for wear-type classification. Additionally, the LSBoost regression is selected as the optimal method for predicting polymer wear-rates across various temperatures. The results underscore the potential of using friction noise and machine learning for real-time wear monitoring, offering valuable insights for tribological system maintenance and failure prediction.

References

1.
Yoshizawa
,
H.
,
Chen
,
Y. L.
, and
Israelachvili
,
J.
,
1993
, “
Fundamental Mechanisms of Interfacial Friction. 1. Relation Between Adhesion and Friction
,”
J. Phys. Chem.
,
97
(
16
), pp.
4128
4140
.
2.
Dwivedi
,
D. K.
,
2010
, “
Adhesive Wear Behaviour of Cast Aluminium–Silicon Alloys: Overview
,”
Mater. Des.
,
31
(
5
), pp.
2517
2531
.
3.
Wei
,
H.
,
Wenjian
,
C.
,
Shaoping
,
W.
, and
Tomovic
,
M. M.
,
2018
, “
Mechanical Wear Debris Feature, Detection, and Diagnosis: A Review
,”
Chin. J. Aeronaut.
,
31
(
5
), pp.
867
882
.
4.
Karnavas
,
Y. L.
, and
Vairis
,
A.
,
2011
, “
Modelling of Frictional Phenomena Using Neural Networks: Friction Coefficient Estimation
,”
Proceedings of the IASTED International Conference on Applied Simulation and Modelling (ASM 2011)
,
Crete, Greece
,
June 22–24
, pp.
54
58
.
5.
Bhushan
,
B.
,
Israelachvili
,
J. N.
, and
Landman
,
U.
,
1995
, “
Nanotribology: Friction, Wear and Lubrication at the Atomic Scale
,”
Nature
,
374
(
6523
), pp.
607
616
.
6.
Pandiyan
,
V.
,
Prost
,
J.
,
Vorlaufer
,
G.
,
Varga
,
M.
, and
Wasmer
,
K.
,
2022
, “
Identification of Abnormal Tribological Regimes Using a Microphone and Semi-Supervised Machine-Learning Algorithm
,”
Friction
,
10
(
4
), pp.
583
596
.
7.
Holmberg
,
K.
, and
Erdemir
,
A.
,
2017
, “
Influence of Tribology on Global Energy Consumption, Costs and Emissions
,”
Friction
,
5
(
3
), pp.
263
284
.
8.
Rosenkranz
,
A.
,
Marian
,
M.
,
Profito
,
F. J.
,
Aragon
,
N.
, and
Shah
,
R.
,
2020
, “
The Use of Artificial Intelligence in Tribology—A Perspective
,”
Lubricants
,
9
(
1
), pp.
2
.
9.
Pandiyan
,
V.
, 2019, “
Modelling and In-Process Monitoring of Abrasive Belt Grinding Process
,” Nanyang Technological University Singapore.
10.
Thankachan
,
T.
,
Soorya Prakash
,
K.
,
Kavimani
,
V.
, and
Silambarasan
,
S.
,
2021
, “
Machine Learning and Statistical Approach to Predict and Analyze Wear Rates in Copper Surface Composites
,”
Met. Mater. Int.
,
27
(
2
), pp.
220
234
.
11.
Varga
,
M.
,
Grundtner
,
R.
,
Maurer
,
A.
, and
Kirchgaßner
,
M.
,
2019
, “
Online Wear Measurement in Harsh Environment. Part 2: Application Roller Press
,”
Tribol. Schmierungstech.
,
66
(
4-5
), pp.
35
43
.
12.
Sawyer
,
W. G.
, and
Wahl
,
K. J.
,
2008
, “
Accessing Inaccessible Interfaces: In Situ Approaches to Materials Tribology
,”
MRS Bull.
,
33
(
12
), pp.
1145
1150
.
13.
Li
,
X.
,
Fu
,
P.
,
Chen
,
K.
,
Lin
,
Z.
, and
Zhang
,
E.
,
2016
, “
The Contact State Monitoring for Seal End Faces Based on Acoustic Emission Detection
,”
Shock Vibr.
,
2016
(
1
), p.
8726781
.
14.
Zhang
,
Z.
, and
Li
,
X.
,
2014
, “
Acoustic Emission Monitoring for Film Thickness of Mechanical Seals Based on Feature Dimension Reduction and Cascaded Decision
,”
Proceedings of the 2014 Sixth International Conference on Measuring Technology and Mechatronics Automation
,
Zhangjiajie, China
,
Jan. 10–11
, IEEE, pp.
64
70
.
15.
Wang
,
J.
,
Li
,
Y.
,
Zhao
,
R.
, and
Gao
,
R. X.
,
2020
, “
Physics Guided Neural Network for Machining Tool Wear Prediction
,”
J. Manuf. Syst.
,
57
, pp.
298
310
.
16.
Kong
,
D.
,
Chen
,
Y.
, and
Li
,
N.
,
2018
, “
Gaussian Process Regression for Tool Wear Prediction
,”
Mech. Syst. Signal Process
,
104
, pp.
556
574
.
17.
Wang
,
J.
,
Wang
,
P.
, and
Gao
,
R. X.
,
2015
, “
Enhanced Particle Filter for Tool Wear Prediction
,”
J. Manuf. Syst.
,
36
, pp.
35
45
.
18.
Wang
,
J.
,
Yan
,
J.
,
Li
,
C.
,
Gao
,
R. X.
, and
Zhao
,
R.
,
2019
, “
Deep Heterogeneous GRU Model for Predictive Analytics in Smart Manufacturing: Application to Tool Wear Prediction
,”
Comput. Ind.
,
111
, pp.
1
14
.
19.
Caggiano
,
A.
,
2018
, “
Tool Wear Prediction in Ti-6Al-4V Machining Through Multiple Sensor Monitoring and PCA Features Pattern Recognition
,”
Sensors
,
18
(
3
), pp.
823
.
20.
Varga
,
M.
,
Haas
,
M.
,
Schneidhofer
,
C.
, and
Adam
,
K.
,
2020
, “
Wear Intensity Evaluation in Conveying Systems—An Acoustic Emission and Vibration Measurement Approach
,”
Tribol. Int.
,
149
, pp.
105549
.
21.
Lingard
,
S.
,
Yu
,
C. W.
, and
Yau
,
C. F.
,
1993
, “
Sliding Wear Studies Using Acoustic Emission
,”
Wear
,
162
, pp.
597
604
.
22.
Mano
,
H.
,
Yoshioka
,
T.
,
Korenaga
,
A.
, and
Yamamoto
,
T.
,
2000
, “
Relationship Between Growth of Rolling Contact Fatigue Cracks and Load Distribution
,”
Tribol. Trans.
,
43
(
3
), pp.
367
376
.
23.
Voronenko
,
B.
,
1982
, “
Acoustic Emission During Phase Transformations in Alloys
,”
Met. Sci. Heat Treat.
,
24
(
8
), pp.
545
553
.
24.
Simmons
,
J.
, and
Wadley
,
H.
,
1984
, “
Theory of Acoustic Emission From Phase Transformations
,”
J. Res. Nat. Bur. Stand.
,
89
(
1
), pp.
55
.
25.
Baranov
,
V. M.
,
Kudryavtsev
,
E. M.
, and
Sarychev
,
G. A.
,
1997
, “
Modelling of the Parameters of Acoustic Emission Under Sliding Friction of Solids
,”
Wear
,
202
(
2
), pp.
125
133
.
26.
Hase
,
A.
,
Wada
,
M.
, and
Mishina
,
H.
,
2008
, “
The Relationship Between Acoustic Emissions and Wear Particles for Repeated Dry Rubbing
,”
Wear
,
265
(
5–6
), pp.
831
839
.
27.
Beerbower
,
A.
,
1975
, “
Mechanical Failure Prognosis Through Oil Debris Monitoring
,” USAAVLABS TR74-100, U.S. Army Air Mobility Research and Development Laboratory, Fort Eustis (ADA006190).
28.
Hase
,
A.
,
Mishina
,
H.
, and
Wada
,
M.
,
2012
, “
Correlation Between Features of Acoustic Emission Signals and Mechanical Wear Mechanisms
,”
Wear
,
292
, pp.
144
150
.
29.
Pandiyan
,
V.
, and
Tjahjowidodo
,
T.
,
2019
, “
Use of Acoustic Emissions to Detect Change in Contact Mechanisms Caused by Tool Wear in Abrasive Belt Grinding Process
,”
Wear
,
436
, pp.
203047
.
30.
Hase
,
A.
,
2020
, “
Early Detection and Identification of Fatigue Damage in Thrust Ball Bearings by an Acoustic Emission Technique
,”
Lubricants
,
8
(
3
), pp.
37
.
31.
Al-Dossary
,
S.
,
Hamzah
,
R. R.
, and
Mba
,
D.
,
2009
, “
Observations of Changes in Acoustic Emission Waveform for Varying Seeded Defect Sizes in a Rolling Element Bearing
,”
Appl. Acoust.
,
70
(
1
), pp.
58
81
.
32.
Poddar
,
S.
, and
Tandon
,
N.
,
2019
, “
Detection of Particle Contamination in Journal Bearing Using Acoustic Emission and Vibration Monitoring Techniques
,”
Tribol. Int.
,
134
, pp.
154
164
.
33.
Rowe
,
K. G.
,
Bennett
,
A. I.
,
Krick
,
B. A.
, and
Sawyer
,
W. G.
,
2013
, “
In Situ Thermal Measurements of Sliding Contacts
,”
Tribol. Int.
,
62
, pp.
208
214
.
34.
He
,
Z.
,
Shi
,
T.
,
Xuan
,
J.
, and
Li
,
T.
,
2021
, “
Research on Tool Wear Prediction Based on Temperature Signals and Deep Learning
,”
Wear
,
478
, pp.
203902
.
35.
Li
,
Z.
,
Liu
,
R.
, and
Wu
,
D.
,
2019
, “
Data-Driven Smart Manufacturing: Tool Wear Monitoring with Audio Signals and Machine Learning
,”
J. Manuf. Processes
,
48
, pp.
66
76
.
36.
D’Addona
,
D. M.
,
Ullah
,
A. S.
, and
Matarazzo
,
D.
,
2017
, “
Tool-Wear Prediction and Pattern-Recognition Using Artificial Neural Network and DNA-Based Computing
,”
J. Intell. Manuf.
,
28
(
6
), pp.
1285
1301
.
37.
Bergs
,
T.
,
Holst
,
C.
,
Gupta
,
P.
, and
Augspurger
,
T.
,
2020
, “
Digital Image Processing With Deep Learning for Automated Cutting Tool Wear Detection
,”
Procedia Manuf.
,
48
, pp.
947
958
.
38.
Gouarir
,
A.
,
Martínez-Arellano
,
G.
,
Terrazas
,
G.
,
Benardos
,
P.
, and
Ratchev
,
S.
,
2018
, “
IN-Process Tool Wear Prediction System Based on Machine Learning Techniques and Force Analysis
,”
Procedia CIRP
,
77
, pp.
501
504
.
39.
Shevchik
,
S. A.
,
Saeidi
,
F.
,
Meylan
,
B.
, and
Wasmer
,
K.
,
2016
, “
Prediction of Failure in Lubricated Surfaces Using Acoustic Time–Frequency Features and Random Forest Algorithm
,”
IEEE Trans. Ind. Inf.
,
13
(
4
), pp.
1541
1553
.
40.
Han
,
T.
,
Jiang
,
D.
,
Zhao
,
Q.
,
Wang
,
L.
, and
Yin
,
K.
,
2018
, “
Comparison of Random Forest, Artificial Neural Networks and Support Vector Machine for Intelligent Diagnosis of Rotating Machinery
,”
Trans. Inst. Meas. Control
,
40
(
8
), pp.
2681
2693
.
41.
Kang
,
S.
,
Ma
,
D.
,
Wang
,
Y.
,
Lan
,
C.
,
Chen
,
Q.
, and
Mikulovich
,
V.
,
2017
, “
Method of Assessing the State of a Rolling Bearing Based on the Relative Compensation Distance of Multiple-Domain Features and Locally Linear Embedding
,”
Mech. Syst. Signal Process
,
86
, pp.
40
57
.
42.
Fauvel
,
K.
,
Fromont
,
É
,
Masson
,
V.
,
Faverdin
,
P.
, and
Termier
,
A.
,
2022
, “
XEM: An Explainable-by-Design Ensemble Method for Multivariate Time Series Classification
,”
Data Min. Knowl. Disc.
,
36
(
3
), pp.
917
957
.
43.
Zhou
,
Z.-H.
, and
Feng
,
J.
,
2019
, “
Deep Forest
,”
Natl. Sci. Rev.
,
6
(
1
), pp.
74
86
.
44.
Massa
,
A.
,
Marcantonio
,
D.
,
Chen
,
X.
,
Li
,
M.
, and
Salucci
,
M.
,
2019
, “
DNNS as Applied to Electromagnetics, Antennas, and Propagation—A Review
,”
IEEE Antennas Wirel. Propag. Lett.
,
18
(
11
), pp.
2225
2229
.
45.
James
,
G.
,
Witten
,
D.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2013
,
An Introduction to Statistical Learning
,
Springer
,
New York
.
46.
Moonam
,
H. M.
,
Qin
,
X.
, and
Zhang
,
J.
,
2019
, “
Utilizing Data Mining Techniques to Predict Expected Freeway Travel Time From Experienced Travel Time
,”
Math. Comput. Simul.
,
155
, pp.
154
167
.
47.
Zhang
,
Y.
, and
Xu
,
X.
,
2022
, “
Modulus of Elasticity Predictions Through LSBoost for Concrete of Normal and High Strength
,”
Mater. Chem. Phys.
,
283
, pp.
126007
.
48.
Sergienko
,
V.
,
Bukharov
,
S.
, and
Kupreev
,
A.
,
2007
, “
Tribological Processes on Contact Surfaces in Oil-Cooled Friction Pairs
,”
Proc. NAS Belarus
,
51
(
4
), pp.
86
89
.
49.
Bukharov
,
S.
,
2004
, “
Reduction of Vibroacoustic Activity of Metal-Polymer Tribojoints in Nonstationary Friction Processes
,” Summary of Ph. D: Thesis, 5.
50.
Ringlein
,
J.
, and
Robbins
,
M. O.
,
2004
, “
Understanding and Illustrating the Atomic Origins of Friction
,”
Am. J. Phys.
,
72
(
7
), pp.
884
891
.
51.
Krim
,
J.
,
2002
, “
Surface Science and the Atomic-Scale Origins of Friction: What Once Was Old Is New Again
,”
Surf. Sci.
,
500
(
1–3
), pp.
741
758
.
52.
Fleischer
,
G.
,
1973
, “
Energetische Methode der Bestimmung des Verschleißes
,”
Schmierungstechnik
,
4
(
9
), pp.
269
274
.
You do not currently have access to this content.