Abstract

Effective lubrication is one of the most vital aspects for desirable productivity in mechanical systems. This can be achieved through reduced friction and wear between mating components by proper lubrication. But the hazardous impact of these chemical lubricants such as petroleum-based oils on our environment cannot be disregarded. So, the consistent quest for a better alternative to these emission-causing lubricants has opened a great avenue for the practice of applying biodiesel like Jatropha oil as a lubricant. The application of nanolubricants has been reported to exhibit better tribological performances than base oils. In the present work, nano-TiO2 particles were synthesized in situ followed by standard characterization techniques. Nano-oil samples were formulated by mixing nanoparticles (NPs) in Jatropha oil at different proportions (v/v). The stability of these dispersants was evaluated by standard methods. The nano-oil samples showed better stability, and there was no appreciable improvement in flashpoints; however, they showed significant enhancement in terms of fire points. The friction coefficient obtained from the four-ball test revealed that the addition of TiO2 NPss improved the antifriction behavior in comparison to pure Jatropha oil (a maximum of 37.91% reduction in frictional force). Results from the test showed that the limiting pressure of seizure was improved by 43.81% compared to base oil. Environmental viability and degradation studies have also been conducted to ascertain the applicability of this TiO2–Jatropha oil as a green fuel alternative. The corrosion inhibition capacity of the nanofluid was found to be greater than plain emulsion. The cost–benefit analysis at the end also suggests that in situ synthesis of TiO2 nanodispersant is economically viable. (The lubricating efficiency of sustainably resourced Jatropha biolubricant was improved multifold by supplementing it with TiO2 nanoparticles. After careful evaluation, it was observed that the nano-oil samples are biocompatible and hazardous emissions from this lubricant were low. The wear and friction inhibitory capabilities as well as the stability of this biolubricant were also enhanced. The effect of nanoparticles on the corrosion of machine parts was also studied, which is rarely focused by researchers.)

References

1.
Ivanov
,
M.
, and
Shenderova
,
O.
,
2017
, “
Nanodiamond-Based Nanolubricants for Motor Oils
,”
Curr. Opin. Solid State Mater. Sci.
,
21
(
1
), pp.
17
24
.
2.
Kotia
,
A.
,
Rajkhowa
,
P.
,
Rao
,
G. S.
, and
Ghosh
,
S. K.
,
2018
, “
Thermophysical and Tribological Properties of Nanolubricants: A Review
,”
Heat Mass transfer
,
54
(
11
), pp.
3493
3508
.
3.
Kole
,
M.
, and
Dey
,
T. K.
,
2013
, “
Enhanced Thermophysical Properties of Copper Nanoparticles Dispersed in Gear Oil
,”
Appl. Therm. Eng.
,
56
(
1–2
), pp.
45
53
.
4.
Kotia
,
A.
, and
Ghosh
,
S. K.
,
2015
, “
Experimental Analysis for Rheological Properties of Aluminium Oxide (Al2O3)/Gear Oil (SAE EP-90) Nanolubricant Used in HEMM
,”
Ind. Lubr. Tribol.
,
67
(
6
), pp.
600
605
.
5.
Kotia
,
A.
,
Ghosh
,
G. K.
,
Srivastava
,
I.
,
Devel
,
P.
, and
Ghosh
,
S. K.
,
2019
, “
Mechanism for Improvement of Friction/Wear by Using Al2O3 and SiO2-Gear Oil Nanolubricants
,”
J. Alloys Compd.
,
782
, pp.
592
599
.
6.
Ghosh
,
G. K.
,
Kotia
,
A.
,
Kumar
,
N.
, and
Ghosh
,
S. K.
,
2021
, “
Optimization and Modeling of Rheological Characteristics for Graphene-Gear Oil Based Nanolubricant Using Response Surface Methodology
,”
Colloids Surf., A
,
630
, p.
127605
.
7.
Kotia
,
A.
,
Borkakoti
,
B.
, and
Ghosh
,
S. K.
,
2018
, “
Wear and Performance Analysis of a 4-Stroke Diesel Engine Employing Nanolubricants
,”
Particulogy
,
37
, pp.
54
63
.
8.
Thottackkad
,
M. V.
,
Rajendrakumar
,
P. K.
, and
Prabhakaran
,
N. K.
,
2014
, “
Tribological Analysis of Surfactant Nanolubricants Containing CeO2 Nanoparticles
,”
Maney Online
,
8
(
3
), pp.
125
130
.
9.
Nabeel Rashin
,
M.
, and
Hemalatha
,
J.
,
2013
, “
Synthesis and Viscosity Studies of Novel Eco-Friendly ZnO-Coconut Oil Nanofluid
,”
Exp. Therm. Fluid Sci.
,
51
, pp.
312
318
.
10.
Wu
,
Y. Y.
,
Tsui
,
W. C.
, and
Liu
,
T. C.
,
2007
, “
Experimental Analysis of Tribological Properties of Lubricating Oils With Nanoparticle Additives
,”
Wear
,
262
(
7–8
), pp.
819
825
.
11.
Sarin
,
R.
,
Sharma
,
M.
,
Sinharay
,
S.
, and
Malhotra
,
R. K.
,
2007
, “
Jatropha–Palm Biodiesel Blends: An Optimum Mix for Asia
,”
Fuel
,
86
(
10–11
), pp.
1365
1371
.
12.
Panda
,
S.
,
Biswas
,
C. K.
, and
Paul
,
S.
,
2024
, “Production of Biodiesel From Industrial Sludge: Recent Progress, Challenges, Perspective,”
Recent Trends in Management and Utilization of Industrial Sludge
,
V.
Kumar
,
S. A.
Bhat
,
P.
Verma
, and
S.
Kumar
, eds.,
Springer
,
Cham, Switzerland
, pp.
337
357
.
13.
Sahoo
,
P. K.
, and
Das
,
L. M.
,
2009
, “
Process Optimization for Biodiesel Production From Jatropha, Karanja and Polanga Oils
,”
Fuel
,
88
(
9
), pp.
1588
1594
.
14.
Ghosh
,
G. K.
,
Panda
,
S.
,
Patel
,
R. K.
,
Kotia
,
A.
,
Kumar
,
N.
, and
Ghosh
,
S. K.
,
2024
, “
Evaluation of Tribological Efficacy and EP Lubricity Properties of Gear Oil (EP90) Energized With Molybdenum Disulfide (MoS2) Nano-Additives
,”
J. Dispersion Sci. Technol.
, pp.
1
11
.
15.
Jatti
,
V. S.
, and
Singh
,
T. P.
,
2015
, “
Copper Oxide Nanoparticles as Friction Reduction and Anti-Wear Additives in Lubricating Oil
,”
J. Mech. Sci. Technol.
,
29
(
2
), pp.
793
798
.
16.
Arumugam
,
S.
, and
Sriram
,
G.
,
2013
, “
Preliminary Study of Nano- and Microscale TiO2 Additives on Tribological Behavior of Chemically Modified Rapeseed Oil
,”
Tribol. Trans.
,
56
(
5
), pp.
797
805
.
17.
Sharma
,
A. K.
,
Tiwari
,
A. K.
,
Singh
,
R. K.
, and
Dixit
,
A. R.
,
2016
, “
Tribological Investigation of TiO2 Nanoparticle Based Cutting Fluid in Machining Under Minimum Quantity Lubrication (MQL)
,”
Mater. Today Proc.
,
3
(
6
), pp.
2155
2162
.
18.
Padgurskas
,
J.
,
Rukuiza
,
R.
,
Prosycevas
,
I.
, and
Kreivaitis
,
R.
,
2013
, “
Tribological Properties of Lubricant Additives of Fe, Cu and Co Nanoparticles
,”
Tribol. Int.
,
60
, pp.
224
232
.
19.
Chang
,
H.
,
Li
,
Z. Y.
,
Kao
,
M. J.
,
Huang
,
K. D.
, and
Wu
,
H. M.
,
2010
, “
Tribological Property of TiO2 Nanolubricant on Piston and Cylinder Surfaces
,”
J. Alloys Compd.
,
495
(
2
), pp.
481
484
.
20.
Chang
,
H.
,
Lan
,
C. W.
,
Chen
,
C. H.
,
Kao
,
M. J.
, and
Guo
,
J. B.
,
2014
, “
Anti-Wear and Friction Properties of Nanoparticles as Additives in the Lithium Grease
,”
Int. J. Precis. Eng. Manuf.
,
15
(
10
), pp.
2059
2063
.
21.
Rajaganapathy
,
C.
,
Rajamurugan
,
T. V.
,
Dyson Bruno
,
A.
,
Murugapoopathi
,
S.
, and
Armstrong
,
M. A.
,
2022
, “
Study on Tribological Behavior of Rice Bran and Karanja Oil-Based TiO2
,”
Mater. Today: Proc.
,
57
(
1
), pp.
125
129
.
22.
Udipt
, and
Singh
,
V.
,
2022
, “
Tribological Investigation of Bitter Almond Oil Containing TiO2 Nanoparticles as Additive
,”
Appl. Sci. Eng. J. Adv. Res.
,
1
(
6
), pp.
17
20
.
23.
Ahmad
,
U.
,
Naqvi
,
S. R.
,
Ali
,
I.
,
Saleem
,
F.
,
Mehran
,
M. T.
,
Sikandar
,
U.
, and
Juchelková
,
D.
,
2022
, “
Biolubricant Production From Castor Oil Using Iron Oxide Nanoparticles as an Additive: Experimental, Modelling and Tribological Assessment
,”
Fuel
,
324
(
A
), p.
124565
.
24.
Singh
,
Y.
,
Rahim
,
E. A.
,
Singh
,
N. K.
,
Sharma
,
A.
,
Singla
,
A.
, and
Palamanit
,
A.
,
2022
, “
Friction and Wear Characteristics of Chemically Modified Mahua (Madhucaindica) Oil Based Lubricant With SiO2 Additives
,”
Wear
,
508–509
, p.
204463
.
25.
Ali
,
M. K. A.
,
Xianjun
,
H.
,
Mai
,
L.
,
Qingping
,
C.
,
Turkson
,
R. F.
, and
Bicheng
,
C.
,
2016
, “
Improving the Tribological Characteristics of Piston Ring Assembly in Automotive Engines Using Al2O3 and TiO2 Nanomaterials as Nano-Lubricant Additives
,”
Tribol. Int.
,
103
, pp.
540
554
.
26.
Bhaumik
,
S.
, and
Pathak
,
S. D.
,
2015
, “
Analysis of Anti-Wear Properties of CuO Nanoparticles as Friction Modifiers in Mineral oil (460cst Viscosity) Using Pin-on-Disk Tribometer
,”
Tribol. Ind.
,
37
(
2
), pp.
196
203
.
27.
Ali
,
M. K. A.
,
Xianjun
,
H.
,
Abdelkareem
,
M. A. A.
,
Gulzar
,
M.
, and
Elsheikh
,
A. H.
,
2018
, “
Novel Approach of the Graphene Nanolubricant for Energy Saving via Anti-Friction/Wear in Automobile Engines
,”
Tribol. Int.
,
124
, pp.
209
229
.
28.
Muthurathinam
,
S. G.
, and
Perumal
,
A. V.
,
2022
, “
Experimental Study on Effect of Nano Al2O3 in Physiochemical and Tribological Properties of Vegetable Oil Sourced Biolubricant Blends
,”
Dig. J. Nanomater. Biostruct.
,
17
(
1
), pp.
47
58
.
29.
Sankaran Nair
,
S.
,
Prabhakaran Nair
,
K.
, and
Rajendrakumar
,
P. K.
,
2018
, “
Micro and Nanoparticles Blended Sesame Oil Bio-Lubricant: Study of Its Tribological and Rheological Properties
,”
Micro Nano Lett.
,
13
(
12
), pp.
1743
1746
.
30.
Zaid
,
M.
,
Kumar
,
A.
, and
Singh
,
Y.
,
2021
, “
Lubricity Improvement of the Raw Jojoba Oil With TiO2 Nanoparticles as an Additives at Different Loads Applied
,”
Mater. Today Proc.
,
46
(
9
), pp.
3165
3168
.
31.
Roy
,
P.
,
Rahman
,
T.
,
Jackson
,
R. L.
,
Jahromi
,
H.
, and
Adhikari
,
S.
,
2023
, “
Hydrocarbon Biolubricants From Hydrotreated Renewable and Waste Derived Liquid Intermediates
,”
J. Clean. Prod.
,
409
, p.
137120
.
32.
Sanjeev
,
K. C.
,
Adhikari
,
S.
, and
Jackson
,
R. L.
,
2021
, “
An Investigation of the Friction and Wear Properties of High Oleic Vegetable-Based and Mineral Oils
,”
Int. J. Agric. Environ. Biotechnol.
,
6
(
5
), pp.
1
20
.
33.
Sanjeev
,
K. C.
,
Adhikari
,
S.
,
Jackson
,
R. L.
, and
Jain
,
N.
,
2021
, “
Friction and Wear Properties of Biomass-Derived Oils via Thermochemical Conversion Processes
,”
Biomass Bioenergy
,
155
, p.
106269
.
34.
Nugroho
,
A.
,
Kozin
,
M.
,
Mamat
,
R.
,
Bo
,
Z.
,
Ghazali
,
M. F.
,
Kamil
,
M. P.
,
Puranto
,
P.
, et al
,
2024
, “
Enhancing Tribological Performance of Electric Vehicle Lubricants: Nanoparticle-Enriched Palm oil Biolubricants for Wear Resistance
,”
Heliyon
,
10
(
22
), p.
e39742
.
35.
Ziental
,
D.
,
Czarczynska-Goslinska
,
B.
,
Mlynarczyk
,
D. T.
,
Glowacka-Sobotta
,
A.
,
Stanisz
,
B.
,
Goslinski
,
T.
, and
Sobotta
,
L.
,
2020
, “
Titanium Dioxide Nanoparticles: Prospects and Applications in Medicine
,”
Nanomaterials
,
10
(
2
), p.
387
.
36.
Patel
,
R. K.
,
Sabar
,
S. K.
, and
Ghosh
,
S. K.
,
2024
, “
The Heating Effect on Tribological Behaviour in the Hot Rolling Process Using TiO2 Oil-in-Water Emulsion—A Comparative Study
,”
Powder Technol.
,
432
, p.
119112
.
37.
Hsu
,
C.-Y.
,
Mahmoud
,
Z. H.
,
Abdullaev
,
S.
,
Ali
,
F. K.
,
Naeem
,
Y. A.
,
Mizher
,
R. M.
,
Karim
,
M. M.
,
Abdulwahid
,
A. S.
,
Ahmadi
,
Z.
, and
Habibzadeh
,
S.
,
2024
, “
Nano Titanium Oxide (Nano-TiO2): A Review of Synthesis Methods, Properties, and Applications
,”
Case Stud. Chem. Environ. Eng.
,
9
, p.
100626
.
38.
Kumar
,
A.
,
Raorane
,
C. J.
,
Syed
,
A.
,
Bahkali
,
A. H.
,
Elgorban
,
A. M.
,
Raj
,
V.
, and
Kim
,
S. C.
,
2023
, “
Synthesis of TiO2, TiO2/PAni, TiO2/PAni/GO Nanocomposites and Photodegradation of Anionic Dyes Rose Bengal and Thymol Blue in Visible Light
,”
Environ. Res.
,
216
(
3
), p.
11474
.
39.
Prakash
,
K. R.
,
Lathika
,
A. S.
,
Ramanna
,
M.
,
Bandadka
,
S.
, and
Anand
,
A.
,
2024
, “
Experimental Study on Tribological, Rheological and Bio-Degradability Characteristics of Canola Oil With TiO2 Nanoparticles as Bio-Nanolubricants
,”
Tribol. Ind.
,
46
(
3
), p.
458
.
40.
Agarwal
,
D.
, and
Agarwal
,
A. K.
,
2007
, “
Performance and Emissions Characteristics of Jatropha Oil (Preheated and Blends) in a Direct Injection Compression Ignition Engine
,”
Appl. Therm. Eng.
,
27
(
13
), pp.
2314
2323
.
41.
Zewde
,
B.
,
Pitliya
,
P.
, and
Raghavan
,
D.
,
2016
, “
The Role of Surface Modified TiO2 Nanoparticles on the Mechanical and Thermal Properties of CTBN Toughened Epoxy Nanocomposite
,”
J. Mater. Sci.
,
51
(
20
), pp.
9314
9329
.
42.
Shah
,
R.
,
Eldridge
,
D.
,
Palombo
,
E.
, and
Harding
,
I.
,
2014
, “
Optimisation and Stability Assessment of Solid Lipid Nanoparticles Using Particle Size and Zeta Potential
,”
J. Phys. Sci.
,
25
(
1
), pp.
59
75
.
43.
Thottackkad
,
M. V.
,
Perikinalil
,
R. K.
, and
Kumarapillai
,
P. N.
,
2012
, “
Experimental Evaluation on the Tribological Properties of Coconut Oil by the Addition of CuO Nanoparticles
,”
Int. J. Precis. Eng. Manuf.
,
13
(
1
), pp.
111
116
.
44.
Sifuentes
,
E. T.
,
Kharissova
,
O. V.
,
Maldonado-Cortés
,
D.
,
Peña-Parás
,
L.
,
Michalczewski
,
R.
, and
Kharisov
,
B. I.
,
2021
, “
A Comparison of Tribological Properties of Nanolubricants Containing Carbon Nanotori and Additional Additives
,”
Mater. Chem. Phys.
,
272
, p.
124973
.
45.
Mittal
,
D.
,
Kumari
,
A.
,
Hostaša
,
J.
,
Yadav
,
P. C.
,
Pandey
,
C.
,
Gupta
,
A.
, and
Sharma
,
S. K.
,
2024
, “
Dry Sliding Behavior of Transparent Yttrium Aluminum Garnet Against 100Cr6 Steel Balls
,”
Int. J. Appl. Ceram. Technol.
46.
Kumar
,
S.
, and
Kumar
,
R.
,
2023
, “
Tribological Characteristics of Synthesized Hybrid Nanofluid Composed of CuO and TiO2 Nanoparticle Additives
,”
Wear
,
518
, p.
204623
.
47.
Philip
,
J. T.
,
Singh
,
K.
, and
Kailas
,
S. V.
,
2024
, “
Ti6Al4V Interacting With Al2O3 Under Ambient and Vacuum Conditions: Effect of Plastic Deformation and Tribo-Chemical Reactions on Wear Mechanisms
,”
Wear
,
550
, p.
205404
.
48.
Panda
,
S.
,
Behera
,
B. P.
,
Bhutia
,
S. K.
,
Biswas
,
C. K.
, and
Paul
,
S.
,
2022
, “
Rare Transition Metal Doped Hydroxyapatite Coating Prepared via Microwave Irradiation Improved Corrosion Resistance, Biocompatibility and Anti-Biofilm Property of Titanium Alloy
,”
J. Alloys Compd.
,
918
, p.
165662
.
49.
Panda
,
S.
,
Bharadwaj
,
T.
,
Verma
,
D.
,
Biswas
,
C. K.
, and
Paul
,
S.
,
2022
, “
Influence of Strontium and Niobium on the Physical and Biological Performance of Hydroxyapatite as a Bioactive Coating on Implant Materials
,”
Ceram. Int.
,
48
(
22
), pp.
33256
33266
.
50.
Panda
,
S.
,
Kazama
,
M.
,
Kawai
,
T.
,
Biswas
,
C. K.
, and
Paul
,
S.
,
2022
, “
Controlled Surface Modification of Ti6Al4V Using Biomimetic Mineralization via Thermo-Chemical Route Improves Bioactivity
,”
Ceram. Int.
,
48
(
8
), pp.
11286
11297
.
51.
Yadav
,
S.
,
Raman
,
A. P. S.
,
Singh
,
M. B.
,
Massey
,
I.
,
Singh
,
P.
,
Verma
,
C.
, and
AlFantazi
,
A.
,
2024
, “
Green Nanoparticles for Advanced Corrosion Protection: Current Perspectives and Future Prospects
,”
Appl. Surf. Sci. Adv.
,
21
, p.
100605
.
52.
Pathak
,
P.
,
Sabar
,
S. K.
,
Patel
,
R. K.
,
Das
,
G.
, and
Ghosh
,
S. K.
,
2024
, “
Tribological Performance of TiO2 Nanoparticle-Oil-Water Emulsion in the Hot Rolling Process
,”
J. Dispersion Sci. Technol.
, pp.
1
12
.
53.
Ghosh
,
G. K.
,
Panda
,
S.
,
Kotia
,
A.
,
Kumar
,
N.
, and
Ghosh
,
S. K.
,
2024
, “
The Conjoint Effect of Lab-Grown Nano-Graphene Dispersant and Omega-9 Fatty Acid Surfactant on Performance of CI Engine
,”
J. Dispersion Sci. Technol.
,
2024
, pp.
1
4
.
You do not currently have access to this content.