The development of a wake flow downstream of a cylindrical rod within a curved channel under zero streamwise pressure gradient is theoretically and experimentally investigated. The measured asymmetric wake quantities such as the mean velocity and turbulent fluctuations in longitudinal and lateral directions as well as the turbulent shear stress are transformed from the probe coordinate system into the curvilinear wake eigen-coordinate system. For the transformed non-dimensionalized velocity defect and the turbulent quantities, affine profiles are observed throughout the flow regime. Based on these observations and using the transformed equations of motion and continuity, a theoretical frame work is established that generally describes the two-dimensional curvilinear wake flow. The theory also describes the straight wake as a special case, for which the curvature radius approaches infinity. The comparison of the theory with the experimental data pertaining to the curvilinear and straight wakes demonstrate the general validity of the theory.

1.
Eifler, J., 1975, “Zur Frage der freien turbulenten Stro¨mungen, insbesondere hinter ruhenden und bewegten Zylindern,” Dissertation D-17, Technische Hochschule Darmstadt, Germany.
2.
Ermshaus, R., 1970, “Eigenu¨mlichketen turbulenter Nachlaufstro¨mungen,” Mitt. a.d. Max-Planck-Inst. fu¨r Stro¨mungsforschung No. 46. Go¨ttingen.
3.
Eskinazi
S.
, and
Yeh
H.
,
1956
, “
An Investigation on Fully Developed Turbulent Flows in a Curved Channel
,”
Journal of the Aeronautical Sciences
, Vol.
23
, pp.
23
34
.
4.
John, J., and Schobeiri, T., 1993, “A Simple and Accurate Method for Calibrating X-Probes,” ASME Journal of Fluids Engineering, Vol. 115.
5.
Kiok, R., 1973, “Einfluß des Turbulenzgrads auf die aerodynamischen Eigenschaften von ebenen Verzo¨gerungsgittern,” Forsch. Ing.-Wes., Vol. 39, No. 1.
6.
Koyama, H., 1983, “Effect of Streamline Curvature on Laminar and Turbulent Wakes,” Proc. Fourth Symp. On Turbulent Shear Flows, University of Karlsruhe, Karlsruhe, Germany, pp. 141–155.
7.
Lakshminarayana
B.
, and
Raj
R.
,
1973
, “
Characteristics of the Wake Behind a Cascade of Airfoils
,”
Journal of Fluid Mechanics
, Vol.
81
, part 4, pp.
707
730
.
8.
Lakshminarayana
B.
, and
Raj
R.
,
1976
, “
Three-Dimensional Characteristics of Turbulent Wakes Behind Rotors of Axial Flow Turbomachinery
,”
ASME Journal of Engineering for Power
, Vol.
98
, pp.
218
228
.
9.
Nakayama
A.
,
1987
, “
Curvature and Pressure-Gradient Effects on a Small-Defect Wake
,”
Journal of Fluid Mechanics
, Vol.
175
, pp.
215
246
.
10.
Pfeil
H.
, and
Eifler
J.
,
1975
a, “
Zur Frage der Schubspannungsverteilung fu¨r die ebenen freien turbulenten Stro¨mungen
,”
Forschung, Ing.-Wes.
, Vol.
41
, No.
4
, pp.
105
112
.
11.
Pfeil
H.
, and
Eifler
J.
,
1975
b, “
Messungen im turbulenten Nachlauf des Einzelzylinders
,”
Forschung. Ing.-Wes.
, Vol.
41
, No.
5
, pp.
137
145
.
12.
Prandtl
L.
,
1942
, “
Bemerkungen zur Theorie der freien Turbulenz
,”
Z. angew. Math. Mech.(ZAMM)
, Vol.
22
, No.
5
, pp.
241
254
.
13.
Reichardt, H., 1950, “Gesetzma¨ßingkeiten der freien Turbulenz,” VDI-Forsch.-Heft, Vol. 414, No. 2. Auflage Du¨sseldorf, VDI-Verlag.
14.
Roshko, A., 1953, “On the Development of Turbulent Wakes From Vortex Streets,” NACA Technical Note 2913.
15.
Savill, A. M., 1983, “The Turbulent Structure of a Highly Curved Two-Dimensional Wake,” in: IUTAM Symposium on Complex Turbulent Flows. R. Dumas and F. Fulachier, eds., Marseille, Springer: Berlin-Heidelberg-New York, pp. 185–197.
16.
Schlichting
H.
,
1930
, “
U¨ber das ebene Windschattenproblem
,”
Ing.-Arch.
, Vol.
1
, pp.
533
571
.
17.
Schobeiri, T., 1976, “Na¨herungslo¨sung der Navier–Stokes’schen Differentialgleichung fu¨r eine zweidimensionale stationa¨re Laminarstro¨mung konstanter Viskosita¨t in konvexen und konkaven Diffusoren und Du¨sen,” Zeitschrift fu¨r angewandte Mathematik und Physik, Vol. 27, Fasc. 1.
18.
Schobeiri, T., 1979, “Theoretische und experimentelle Untersuchungen laminarer und turbulenter Stro¨mungen in Diffusoren,” Dissertation D-17, Technische Hochschule Darmstadt, Germany.
19.
Schobeiri, T., 1988, “Establishment of a Research Facility for Investigating the Effects of Unsteady Inlet Flow Condition, Pressure Gradient and Curvature on Boundary Layer Transition and Heat Transfer,” Internal Report, Texas A&M University, Turbomachinery Laboratory.
20.
Schobeiri
T.
,
1990
, “
The Influence of Curvature and Pressure Gradient on the Flow Temperature and Velocity Distribution
,”
International Journal of Mechanical Sciences
, Vol.
32
, pp.
851
861
.
21.
Schobeiri, T., and Pardivala, D., 1992, “Development of a Subsonic Flow Research Facility for Simulating the Turbomachinery Flow and Investigating Its Effects on Boundary Layer Transition, Wake Development and Heat Transfer,” Fourth International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, pp. 98–114.
22.
Schobeiri, T., and Pappu, K., 1994, “Prediction of Characteristics of Two-Dimensional Turbulent Wakes Under the Influence of Streamline Curvature and Zero, Positive, and Negative Pressure Gradients,” Final Contract Report, Part I, NAG3-1256, NASA Lewis Research Center.
23.
Schobeiri, T., and John, J., 1994, “A Study of the Development of Steady and Periodic Unsteady Turbulent Wakes Through Curved Channels at Positive, Zero, and Negative Streamwise Pressure Gradients,” Final Contract Report, Part II, NAG3-1256, NASA Lewis Research Center.
24.
Townsend
A. A.
,
1947
, “
Measurements in the Turbulent Wake of a Cylinder
,”
Proceedings of the Royal Society, London, Series A
, Vol.
190
, pp.
551
561
.
25.
Trost, N., 1975, “Einfluß der Zustro¨mturbulenz auf die Stro¨mung in Axialgittern,” Dissertation an der Technischen Hochschule Darmsadt, Germany D 17.
26.
Wattendorf, F. L., 1935, “A Study of the Effect of Curvature on Fully Developed Turbulent Flow,” Proceedings of the Royal Society, London, Vol. 148, pp. 565–598.
This content is only available via PDF.
You do not currently have access to this content.