The presence of wake-passing in the gas turbine environment significantly modifies the heat transfer characteristics on the downstream blade surface by causing wake-induced transition. In this study, time-dependent boundary layer calculations were carried out using a model for wake-induced transition based on a prescribed time-dependent intermittent function. The model is determined from the well-known turbulent spot propagation theory in a time-space diagram and from experimental evidence in the ensemble-averaged sense. Time-averaged heat transfer distributions are evaluated and compared with experimental results for different flow and wake-generating conditions over a flat plate. Comparison showed that the present time-dependent calculations yield more accurate results than existing steady superposition models. [S0889-504X(00)00901-6]

1.
Pfeil, H., and Herbst, R., 1979, “Transition Procedure of Instationary Boundary Layers,” ASME Paper No. 79-GT-128.
2.
Pfeil
,
H.
,
Herbst
,
R.
, and
Schro¨der
,
T.
,
1983
, “
Investigation of the Laminar–Turbulent Transition of Boundary Layers Disturbed by Wakes
,”
ASME J. Turbomach.
,
105
, pp.
130
137
.
3.
Dullenkopf
,
K.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1991
, “
The Effect of Incident Wake Conditions on the Mean Heat Transfer of an Airfoil
,”
ASME J. Turbomach.
,
113
, pp.
412
418
.
4.
Liu
,
X.
, and
Rodi
,
W.
,
1991
, “
Experiments on Transitional Boundary Layers With Wake-Induced Unsteadiness
,”
J. Fluid Mech.
,
231
, pp.
229
256
.
5.
Orth
,
U.
,
1993
, “
Unsteady Boundary-Layer Transition in Flow Periodically Disturbed by Wakes
,”
ASME J. Turbomach.
,
115
, pp.
707
713
.
6.
Funazaki, K., Kitazawa, T., Koizumi, K., and Tadashi, T., 1997, “Studies on Wake-Disturbed Boundary Layers Under the Influences of Favorable Pressure Gradient and Free-Stream Turbulence: Part I—Experimental Setup and Discussions on Transition Model,” ASME Paper No. 97-GT-451.
7.
Chakka
,
P.
, and
Schobeiri
,
M. T.
,
1999
, “
Modeling Unsteady Boundary Layer Transition on a Curved Plate Under Periodic Unsteady Conditions: Aerodynamics and Heat Transfer Investigations
,”
ASME J. Turbomach.
,
121
, pp.
88
97
.
8.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.-W.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 1 of 4: Composite Picture
,”
ASME J. Turbomach.
,
119
, pp.
114
127
.
9.
Mayle
,
R. E.
, and
Dullenkopf
,
K.
,
1990
, “
A Theory for Wake-Induced Transition
,”
ASME J. Turbomach.
,
112
, pp.
188
195
.
10.
Mayle
,
R. E.
, and
Dullenkopf
,
K.
,
1991
, “
More on the Turbulent-Strip Theory for Wake-Induced Transition
,”
ASME J. Turbomach.
,
113
, pp.
428
432
.
11.
Hodson
,
H. P.
,
Addison
,
J. S.
, and
Shepherdson
,
C. A.
,
1992
, “
Models for Unsteady Wake-Induced Transition in Axial Turbomachines
,”
J. Phys. III
,
2
, pp.
545
574
.
12.
Funazaki
,
K.
,
1996
, “
Unsteady Boundary Layers on a Flat Plate Disturbed by Periodic Wakes: Part I—Measurement of Wake-Affected Heat Transfer and Wake-Induced Transition Model
,”
ASME J. Turbomach.
,
118
, pp.
327
336
.
13.
Tran
,
L. T.
, and
Taulbee
,
D. B.
,
1992
, “
Prediction of Unsteady Rotor-Surface Pressure and Heat Transfer From Wake Passings
,”
ASME J. Turbomach.
,
114
, pp.
807
817
.
14.
Cho
,
N.-H.
,
Liu
,
X.
,
Rodi
,
W.
, and
Scho¨nung
,
B.
,
1993
, “
Calculation of Wake-Induced Unsteady Flow in a Turbine Cascade
,”
ASME J. Turbomach.
,
115
, pp.
675
686
.
15.
Fan
,
S.
, and
Lakshminarayana
,
B.
,
1996
, “
Computation and Simulation of Wake-Generated Unsteady Pressure and Boundary Layers in Cascades: Part I—Description of the Approach and Validation
,”
ASME J. Turbomach.
,
118
, pp.
96
108
.
16.
Kim, K., and Crawford, M. E., 1998, “Prediction of Unsteady Wake-Passing Effects on Boundary Layer Development,” Heat Transfer in Turbomachinery, ASME HTD-Vol. 361/PID-Vol. 3, p. 399.
17.
Abu-Ghannam
,
B. J.
, and
Shaw
,
R.
,
1980
, “
Natural Transition of Boundary Layers—The Effects of Turbulence, Pressure Gradient and Flow History
,”
J. Mech. Eng. Sci.
,
22
, No.
5
, pp.
213
228
.
18.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar–Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
, pp.
509
537
.
19.
Cebeci, T., and Platzer, M. F., 1989, “A General Method for Unsteady Heat Transfer on Turbine Blades,” NASA CR 4206.
20.
Cebeci, T., and Smith, A. M. O., 1974, Analysis of Turbulent Boundary Layers, Academic Press, New York.
21.
Kim, K., 1998, “Computation of Wake-Passing Effects on Turbine Blade Boundary Layers,” Ph.D. Dissertation, The University of Texas at Austin, Austin, TX.
22.
Parikh, P. G., Reynolds, W. C., and Jayaraman, R., 1981, “On the Behavior of an Unsteady Turbulent Boundary Layer,” presented at the Symposium on Numerical and Physical Aspects of Aerodynamic Flows, Long Beach, CA, Jan. 19–21.
23.
Binder
,
A.
,
Forster
,
W.
,
Kruse
,
H.
, and
Rogge
,
H.
,
1985
, “
An Experimental Investigation Into the Effect of Wakes on the Unsteady Turbine Rotor Flow
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
458
466
.
1.
Funazaki, K., and Kitazawa, T., 1997, “Boundary Layers Transition Induced by Periodic Wake Passage (Measurements of the Boundary Layer by Hot-Wire Anemometry),” Bulletin of GTSJ, p. 26;
2.
also private communication with K. Funazaki.
You do not currently have access to this content.