This experimental investigation reports the convective heat transfer coefficient around the rotor of a transonic turbine stage. Both time-resolved and time-averaged aspects are addressed. The measurements are performed around the rotor blade at 15, 50, and 85% span as well as on the rotor tip and the hub platform. Four operating conditions are tested covering two Reynolds numbers and three pressure ratios. The tests are performed in the compression tube turbine test rig CT3 of the von Karman Institute, allowing a correct simulation of the operating conditions encountered in modern aero-engines. The time-averaged Nusselt number distribution shows the strong dependence on both blade Mach number distribution and Reynolds number. The time-resolved heat transfer rate is mostly dictated by the vane trailing edge shock impingement on the rotor boundary layer. The shock passage corresponds to a sudden heat transfer increase. The effects are more pronounced in the leading edge region. The increase of the stage pressure ratio causes a stronger vane trailing edge shock and thus larger heat transfer fluctuations. The influence of the Reynolds number is hardly visible.

1.
Ashworth
,
D. A.
,
LaGraff
,
J. E.
,
Shultz
,
D. L.
, and
Grindrod
,
K. J.
,
1985
, “
Unsteady Aerodynamic and Heat Transfer Processes in a Transonic Turbine Stage
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
1022
1030
.
2.
Doorly
,
D. J.
, and
Oldfield
,
M. L. G.
,
1985
, “
Simulation of the Effect of Shock Wave Passing on a Turbine Rotor Blade
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
998
1006
.
3.
Popp, O., Smith, D. E., Bubb, J. V., Grabowski, III, Diller, T. E., Schetz, J. A., and Ng Wing-Fai, 2000, “Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade, Part II: Unsteady Heat Transfer.” ASME Paper 2000-GT-0202.
4.
Guenette
,
G. R.
,
Epstein
,
A. H.
,
Giles
,
M. B.
,
Haimes
,
R.
, and
Norton
,
R. J. G.
,
1989
, “
Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements
ASME J. Turbomach.
,
111
, pp.
1
7
.
5.
Dunn
,
M. G.
,
Seymour
,
P. J.
,
Woodward
,
S. H.
,
Georges
,
W. K.
, and
Chupp
,
R. E.
,
1989
, “
Phase-resolved Heat-Flux Measurements on the Blade of a Full-Scale Rotating Turbine
,”
ASME J. Turbomach.
,
111
, pp.
8
19
.
6.
Hilditch, M. A., Smith G. C., Anderson, S. J., and Chana, K. S., 1995, “Unsteady Measurements in an Axial Flow Turbine Stage,” Proc., 85th propulsion and energetics panel symposium on loss mechanism and unsteady flows in turbomachines, Derby, U.K.
7.
Moss, R. W., Sheldrake, C. D., and Ainsworth, R. W., Smith, A. D., and Dancer, S. N., 1995, “Unsteady Pressure and Heat Transfer Measurements on a Rotating Blade Surface in a Transient Flow Facility,” 85th Propulsion and Energetic Panel Symposium on Loss Mechanism and Unsteady Flows in Turbomachines, Derby, UK, 1995. AGARD CP No. 571.
8.
De´nos, R., 1996, “Investigation of the Unsteady Aerothermal Flow Field in the Rotor of a Transonic Turbine,” Ph.D. thesis, IVK-University of Poitiers
9.
Arts
,
T.
,
Rouvroit
,
Arts
,
T.
,
Lambert de
,
M.
,
1992
, “
Aerothermal performance of a 2D highly loaded transonic turbine nozzle guide vane–a test case for inviscid and viscous flow computations,” ASME Paper No. 90-GT-358
,
ASME J. Turbomach.
,
114
(
1
), pp.
147
154
.
10.
Johnson
,
A. B.
,
Rigby
,
M. J.
,
Oldfield
,
M. L. G.
,
Ainsworth
,
R. W.
, and
Oliver
,
M. J.
,
1989
, “
Surface Heat Transfer Fluctuations on Turbine Rotor Blade due to Upstream Shock Wave Passing
,”
ASME J. Turbomach.
,
111
, pp.
105
115
.
11.
Johnson, A. B., Oldfield, M. L. G., Rigby, M. J., and Giles, M. B., 1990, “Nozzle Guide Vane Shock Wave Propagation and Bifurcation in a Transonic Turbine Rotor,” ASME Paper No. 90-GT-310.
12.
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Garside
,
T.
,
1998
, “
Effect of Rotation on Blade Surface Heat Transfer: An Experimental Investigation
,”
ASME J. Turbomach.
,
120
, pp.
530
540
.
13.
De´nos
,
R.
,
Arts
,
T.
,
Paniagua
,
G.
,
Michelassi
,
V.
, and
Martelli
,
F.
,
2001
, “
Investigation of the Unsteady Rotor Aerodynamics in a Transonic Turbine Stage
,” ASME Paper No. 2000-GT-0435,
ASME J. Turbomach.
,
123
, p.
81
89
.
14.
Sieverding, C. H., and Arts, T., 1992, “The VKI compression Tube Annular Cascade Facility CT3,” ASME paper 92-GT-336.
15.
Sieverding, C. H., Vanhaeverbeek, C., and Schulze, G., 1992, “An Opto-electronic Data Transmission System for Measurements on Rotating Turbomachinery Components” ASME Paper 92-GT-337.
16.
Camci, G., 1985, “Experimental and Theoretical Study of Film Cooling on a Gas Turbine Blade,” Ph.D. thesis, Katholieke Universiteit Leuven/von Karman Institute.
17.
Camci
,
G.
, and
Arts
,
T.
,
1985
, “
Experimental Heat Transfer Investigation Around the Film-Cooled Leading Edge of a High-pressure Gas Turbine Rotor Blade
,”
ASME J. Eng. Gas Turbines Power
,
107
, pp.
1016
1021
.
18.
Lowery
,
G. W.
, and
Vachon
,
R. I.
,
1975
, “
The Effect of Turbulence on Heat Transfer from Heated Cylinders
,”
Int. J. Heat Mass Transf.
,
18
, pp.
1229
1242
.
19.
Michelassi
,
V.
,
Martelli
,
F.
,
De´nos
,
R.
,
Arts
,
T.
, and
Sieverding
,
C. H.
,
1999
, “
Unsteady Heat Transfer in Stator-Rotor Interaction by Two Equation Turbulence Model
,”
ASME J. Turbomach.
, ASME Paper 98-GT-243,
121
, pp.
436
447
.
20.
Kays, W., 1966, Convective Heat and Mass Transfer, McGraw-Hill, New York, NY
21.
Heider, R., Duboue´, J. M., Petot, B., Billonnet, G., Couaillier, V., and Liamis, N., 1993, “Three-Dimensional Analysis of Turbine Rotor Flow Including Tip Clearance,” ASME Paper 93-GT-111.
22.
Schultz, D. L., and Jones, T. V., 1973, “Heat Transfer Measurements in Short Duration Facilities,” AGARDograph no 165.
You do not currently have access to this content.