Abstract
Flow separations in the corner regions of blade passages are common. The separations are three dimensional and have quite different properties from the two-dimensional separations that are considered in elementary courses of fluid mechanics. In particular, the consequences for the flow may be less severe than the two-dimensional separation. This paper describes the nature of three-dimensional (3D) separation and addresses the way in which topological rules, based on a linear treatment of the Navier-Stokes equations, can predict properties of the limiting streamlines, including the singularities which form. The paper shows measurements of the flow field in a linear cascade of compressor blades and compares these to the results of 3D computational fluid dynamics (CFD). For corners without tip clearance, the presence of three-dimensional separation appears to be universal, and the challenge for the designer is to limit the loss and blockage produced. The CFD appears capable of predicting this.