Abstract

Flow separations in the corner regions of blade passages are common. The separations are three dimensional and have quite different properties from the two-dimensional separations that are considered in elementary courses of fluid mechanics. In particular, the consequences for the flow may be less severe than the two-dimensional separation. This paper describes the nature of three-dimensional (3D) separation and addresses the way in which topological rules, based on a linear treatment of the Navier-Stokes equations, can predict properties of the limiting streamlines, including the singularities which form. The paper shows measurements of the flow field in a linear cascade of compressor blades and compares these to the results of 3D computational fluid dynamics (CFD). For corners without tip clearance, the presence of three-dimensional separation appears to be universal, and the challenge for the designer is to limit the loss and blockage produced. The CFD appears capable of predicting this.

1.
Dring
,
R. P.
,
Joslyn
,
H. D.
, and
Hardin
,
L. W.
,
1982
, “
An Investigation of Compressor Rotor Aerodynamics
,”
ASME J. Turbomach.
,
104
(
1
), pp.
84
96
.
2.
Joslyn
,
D. H.
, and
Dring
,
R. P.
,
1985
, “
Axial Compressor Stator Aerodynamics
,”
ASME J. Heat Transfer
,
107
, pp.
485
493
.
3.
Dong
,
Y.
,
Gallimore
,
S. J.
, and
Hodson
,
H. P.
,
1987
, “
Three-Dimensional Flows and Loss Reduction in Axial Compressors
,”
ASME J. Turbomach.
,
109
(
3
), pp.
354
361
.
4.
McDougall, N. M., 1988, “Stall Inception in Axial Compressors,” Ph.D. thesis, University of Cambridge, UK.
5.
Schultz
,
H. D.
,
Gallus
,
H. E.
, and
Lakshminarayana
,
B.
,
1990
, “
Three-Dimensional Separated Flow Field in the Endwall Region of an Annular Compressor Cascade in the Presence of Rotor-Stator Interaction: Part 1-Quasi-Steady Flow Field and Comparison with Steady State Data
,”
ASME J. Turbomach.
,
112
(
4
), pp.
669
678
.
6.
Zierke
,
W. C.
, and
Straka
,
W. A.
,
1996
, “
Flow Visualization and the Three-Dimensional Flow in an Axial Flow Pump
,”
J. Propulsion Power
,
12
(
2
), pp.
250
259
.
7.
Place, J. M. M., 1997, “Three-Dimensional Flow in Axial Compressors,” PhD thesis, University of Cambridge, UK.
8.
Bolger, J. J. 1999, “Three-Dimensional Design of Compressor Blading,” PhD thesis, University of Cambridge, UK.
9.
Friedrichs, J., Baumgarten, S., Kosyna, G., and Stark, U., 2000, “Effect of Stator Design on Stato Boundary Layer Flow in a Highly Loaded Single-Stage Axial Flow Low-Speed Compressor,” ASME Paper 2000-GT-616.
10.
Chang, P. K., 1970, Separation of Flow, Pergamon Press, New York, Interdisciplinary and Advanced Topics in Science and Engineering, Vol. 3.
11.
De´lery
,
J. M.
,
2001
, “
Robert Legendre and Henry Werle: Toward the Elucidation of Three-Dimensional Separation
,”
Annu. Rev. Fluid Mech.
,
33
, pp.
129
154
.
12.
Werle´ H., 1974, Le Tunnel Hydrodynamique au Service de la Recherche Ae´rospatiale. ONERA Publ. 156, p. 23.
13.
Werle´ H., 1982, “Flow Visualization Techniques for the Study of High Incidence Aerodynamics,” AGARD-VKI Lect. Ser., pp. 121–124.
14.
Werle´ H., 1983, “Visualisation des E´coulements Tourbillonnaires Tridimensionnels,” AGARD-FDP Conf. Aerodynamics of Vortical Type Flows in Three-Dimensions, Rotterdam, April 25–27, p. 25.
15.
Werle´ H., 1986, “Possibilite´s D’essai Offertes par les Tunnels Hydrodynamiques a` Visualisation de l’Onera Dans les Domaines Ae´ronautiques et Navals,” AGARD-CP 413, p. 26.
16.
Legendre, R., 1956, “Separation de l’Ecoulement Laminaire Tridimensionnel,” Recherche Aeronautique 54, pp. 3–9.
17.
Legendre
,
R.
,
1965
, “Lignes de Courant d’un E´coulement Continu,”
La Rech. Aerosp.
,
105
, pp.
3
9
.
18.
Legendre
,
R.
,
1966
, “Vortex Sheet Rolling up Along Leading Edges of Delta Wings,”
Prog. Aerosp. Sci.
,
7
, pp.
7
33
.
19.
Lighthill, M. J., 1963, “Attachment and Separation in Three-Dimensional Flows,” Laminar Boundary Layers, L. Rosenhead, ed., Oxford Univ. Press, Oxford, UK, pp. 72–82.
20.
Perry
,
A. E.
, and
Fairlie
,
B. D.
,
1974
, “Critical Points in Flow Patterns,”
Adv. Geophys.
,
18B
, pp.
299
315
.
21.
Tobak
,
M.
, and
Peake
,
D. J.
,
1982
, “
Topology of Three-Dimensional Separated Flows
,”
Annu. Rev. Fluid Mech.
,
14
, pp.
61
85
.
22.
Perry
,
A. E.
, and
Chong
,
M. S.
,
1987
, “
A Description of Eddying Motions and Flow Patterns Using Critical Point Concepts
,”
Annu. Rev. Fluid Mech.
,
19
, pp.
125
155
.
23.
Dallmann, U., 1983, “Topological Structures of Three-Dimensional Flow Separation,” DFVLR, IB 221-82-A07, Gottingen, Germany.
24.
Poincare´, H., 1928, Oeuvres de Henri Poincare´, Tome I, Gauthier-Villars, Paris.
25.
Hunt
,
J. C. R.
,
Abell
,
C. J.
,
Peterka
,
J. A.
, and
Woo
,
H.
,
1978
, “
Kinematical Studies of Flow Around Free or Surface-Mounted Obstacles; Applying Topology to Flow Visualization
,”
J. Fluid Mech.
,
86, Part 1
, pp.
179
200
.
26.
Flegg, G. C., 1974, From Geometry to Topology, English Universities Press, London.
27.
Gbadebo, S. A., 2003, “Three-Dimensional Separations in Compressors,” Ph.D. thesis, University of Cambridge, UK.
28.
Eichelbrenner, E. A., and Oudart, A., 1955, “Method de Calcul de la Couche Limite Tridimensionelle, Application a un Corps Fusele Incline sur le Vent,” ONERA Publication 76, Chatillon.
29.
Maskell, E. C., 1955, “Flow Separation in Three Dimensions,” RAE Farnborough Report No. Aero. 2565, Nov.
30.
Denton, J. D., 1999, “Multistage Turbomachinery Flow Calculation Program-MULTIP,” Whittle Laboratory, University of Cambridge, UK.
You do not currently have access to this content.