The influence of free-stream turbulence on wake dispersion and boundary layer transition processes has been studied in a 1.5-stage axial compressor. An inlet grid was used to produce turbulence characteristics typical of an embedded stage in a multistage machine. The grid turbulence strongly enhanced the dispersion of inlet guide vane (IGV) wakes. This modified the interaction of IGV and rotor wakes, leading to a significant decrease in periodic unsteadiness experienced by the downstream stator. These observations have important implications for the prediction of clocking effects in multistage machines. Boundary layer transition characteristics on the outlet stator were studied with a surface hot-film array. Observations with grid turbulence were compared with those for the natural low turbulence inflow to the machine. The transition behavior under low turbulence inflow conditions with the stator blade element immersed in the dispersed IGV wakes closely resembled the behavior with elevated grid turbulence. It is concluded that with appropriate alignment, the blade element behavior in a 1.5-stage axial machine can reliably indicate the blade element behavior of an embedded row in a multistage machine.

1.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
509
537
.
2.
Walker
,
G. J.
, 1993, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines—A Discussion
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
207
217
.
3.
Walker
,
G. J.
,
Hughes
,
J. D.
,
Köhler
,
I.
, and
Solomon
,
W. J.
, 1998, “
The Influence of Wake-Wake Interactions on Loss Fluctuations of a Downstream Axial Compressor Blade Row
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
695
704
.
4.
Walker
,
G. J.
,
Hughes
,
J. D.
, and
Solomon
,
W. J.
, 1999, “
Periodic Transition on an Axial Compressor Stator—Incidence and Clocking Effects. Part I—Experimental Data, Part II—Transition Onset Predictions
,”
ASME J. Turbomach.
0889-504X,
121
, pp.
398
415
.
5.
Mailach
,
R.
, and
Vogeler
,
K.
, 2004, “
Rotor-Stator Interactions in a Four-Stage Low Speed Axial Compressor—Part 1: Unsteady Profile Pressures and the Effect of Clocking
,” ASME Paper GT2004-53098.
6.
Hummel
,
F.
, 2002, “
Wake-Wake Interaction and its Potential for Clocking in a Transonic High-Pressure Turbine
,”
ASME J. Turbomach.
0889-504X,
124
(
1
), pp.
69
76
.
7.
Tiedemann
,
M.
, and
Kost
,
F.
, 2001, “
Some Aspects of Wake-Wake Interactions Regarding Turbine Stator Clocking
,”
ASME J. Turbomach.
0889-504X,
123
(
3
), pp.
526
533
.
8.
Reinmöller
,
U.
,
Stephan
,
B.
,
Schmidt
,
S.
, and
Niehuis
,
R.
, 2002, “
Clocking Effects in a 1.5 Stage Axial Turbine-Steady and Unsteady Experimental Investigations Supported by Numerical Simulations
,”
ASME J. Turbomach.
0889-504X,
124
(
1
), pp.
52
60
.
9.
Haldeman
,
C.
,
Dunn
,
M.
,
Barter
,
J.
,
Green
,
B.
, and
Bergholtz
,
R.
, 2004, “
Experimental Investigation of Vane Clocking in a One and 1∕2 Stage High Pressure Turbine
,” ASME Paper GT2004–53477.
10.
Jouini
,
D. B. M.
,
Little
,
D.
,
Bancalari
,
E.
,
Dunn
,
M.
,
Haldeman
,
C.
, and
Johnson
,
P. D.
, 2003, “
Experimental Investigation of Airfoil Wake Clocking Impacts on Aerodynamic Performance in a Two Stage Turbine Test Rig
,” ASME Paper GT-2003–38872.
11.
Stieger
,
R. D.
, and
Hodson
,
H. P.
, 2004, “
The Unsteady Development of a Turbulent Wake Through a Downstream Low-Pressure Turbine Blade Passage
,” ASME Paper GT2004–53061.
12.
Wisler
,
D. C.
,
Halstead
,
D. E.
, and
Beacher
,
B. F.
, 1999, “
Improving Compressor and Turbine Performance Through Cost-Effective Low-Speed Testing
,” ISOBE Paper 99–7073.
13.
Place
,
J. M. M.
,
Howard
,
M. A.
, and
Cumpsty
,
N. A.
, 1996, “
Simulating the Multistage Environment for Single-Stage Compressor Experiments
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
706
716
.
14.
Roach
,
P. E.
, 1987, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
0142-727X,
8
(
2
), pp.
82
92
.
15.
Solomon
,
W. J.
, 1996, “
Unsteady Boundary Layer Transition on Axial Compressor Blades
,” Ph.D. thesis, University of Tasmania.
16.
Evans
,
R. L.
, 1975, “
Turbulence and Unsteadiness Measurements Downstream of a Moving Blade Row
,”
ASME J. Eng. Power
0022-0825,
122
, pp.
131
139
.
17.
Hodson
,
H. P.
,
Huntsman
,
I.
, and
Steele
,
A. B.
, 1994, “
An Investigation of Boundary Layer Development in a Multistage LP Turbine
,”
ASME J. Eng. Power
0022-0825,
116
, July,
375
383
.
18.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines: Part 1 of 4—Composite Picture
,”
ASME J. Turbomach.
0889-504X,
119
(
1
), pp.
114
127
.
19.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines: Part 2 of 4—Compressors
,”
ASME J. Turbomach.
0889-504X,
119
(
3
), pp.
426
444
.
20.
Camp
,
T. R.
, and
Shin
,
H. W.
, 1995, “
Turbulence Intensity and Length Scale Measurements in Multistage Compressors
,”
ASME J. Turbomach.
0889-504X,
117
, pp.
38
46
.
21.
Hughes
,
J. D.
, 2001, “
Unsteady Aerodynamics of Axial Compressors
,” Ph.D. thesis, University of Tasmania.
You do not currently have access to this content.