One significant issue concerning the impingement heat transfer with a jet array is related to the so-called “crossflow,” where a local jet performance is influenced by the convection of the confluence from the impingement of the jet∕jets placed upstream. As a result, the heat transfer coefficient may vary along the streamwise direction and creates more or less nonuniform cooling over the component, which is undesirable from both the performance and durability standpoints. Described in this paper is an experimental investigation of the heat transfer coefficient on surfaces impinged by an array of six inline circular jets with their diameters increased monotically along the streamwise direction. The local heat transfer distributions on both the target surface and jet-issuing plate are measured using a transient liquid crystal technique. By varying the jet hole-size in a systematic manner, the actual distribution of jet flow rate and momentum within a jet array may be optimally metered and controlled against crossflow. The effects on the heat transfer coefficient distribution due to variations of jet-to-target distance and interjet spacing are investigated. The varying-diameter results are compared with those from a corresponding array of uniform jet diameter.

1.
Martin
,
H.
, 1977, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
0065-2717,
13
, pp.
1
60
.
2.
Obot
,
N. T.
,
Mujumdar
,
A. S.
, and
Douglas
,
W. J. M.
, 1982, “
Effect of Semi-Confinement on Impingement Heat Transfer
,”
Proc. 7th Int. Heat Transfer Conf.
,
Munich
, September 6–10, Vol.
3
, pp.
395
400
.
3.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
, 1992, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
0142-727X,
13
(
2
), pp.
106
115
.
4.
Bizzak
,
D. J.
, and
Chyu
,
M. K.
, 1995, “
Use of a Laser-Induced Fluorescence Thermal Imaging System for Local Jet Impingement Heat Transfer Measurement
,”
Int. J. Heat Mass Transfer
0017-9310,
38
(
2
), pp.
267
274
.
5.
Kercher
,
D. M.
, and
Tabakoff
,
W.
, 1970, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface including the Effect of Spent Air
,”
J. Eng. Power
0022-0825,
92
, pp.
73
82
.
6.
Sparrow
,
E. M.
,
Goldstein
,
R. J.
, and
Rouf
, 1975, “
Effect of Nozzle-Surface Separation Distance on Impingement Heat Transfer for a Jet in a Crossflow
,”
ASME J. Heat Transfer
0022-1481,
97
, pp.
528
533
.
7.
Bouchez
,
J. P.
, and
Goldstein
,
R. J.
, 1975, “
Impingement Cooling from a Circular Jet in a Crossflow
,”
Int. J. Heat Mass Transfer
0017-9310,
18
, pp.
719
730
.
8.
Behbahani
,
A. I.
, and
Goldstein
,
R. J.
, 1983, “
Local Heat Transfer to Staggered Arrays of Impinging Circular Air Jets
,”
J. Eng. Power
0022-0825,
105
, pp.
354
360
.
9.
Florschuetz
,
L. W.
,
Berry
,
R. A.
, and
Metzger
,
D. E.
, 1980, “
Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets with Crossflow of Spent Air
,”
ASME J. Heat Transfer
0022-1481,
102
, pp.
132
137
.
10.
Hollworth
,
B. R.
, and
Cole
,
G. H.
, 1987, “
Heat Transfer to Arrays of Impinging Jets in Crossflow
,”
ASME J. Turbomach.
0889-504X,
109
, pp.
564
571
.
11.
Van Treuren
,
K. W.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Jones
,
T. V.
, 1993, “
Detailed Measurements of Local Heat Transfer Coefficient and Adiabatic Wall Temperature Beneath an Array of Impinging Jets
,”
ASME J. Turbomach.
0889-504X,
16
, pp.
369
371
.
12.
Hung
,
Y.
,
Ekkad
,
S. V.
, and
Han
,
J-C.
, 1998, “
Detailed Heat Transfer Distributions under an Array of Orthogonal Impinging Jets
,”
J. Thermophys. Heat Transfer
0887-8722,
12
, pp.
73
79
.
13.
Gao
,
L.
,
Ekkad
,
S. V.
, and
Bunker
,
R. S.
, 2003, “
Impingement Heat Transfer under Linearly Stretched Arrays of Holes
,” ASME Paper No. GT2003-38178.
14.
Chyu
,
M. K.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
, 1998, “
Determination of Local Heat Transfer Coefficient Based on Bulk Mean Temperature Using a Transient Liquid Crystals Techniques
,”
Exp. Therm. Fluid Sci.
0894-1777,
18
, pp.
142
149
.
15.
Zecchi
,
S.
, and
Bacci
,
A.
, 2004, “
Numerical Analysis of Crossflow and Single Jet Impinging on a Heated Surface with Shaped Groove
,” ASME Paper No. GT2004-53549.
16.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
You do not currently have access to this content.