This paper examines the response of a rotor blade boundary layer and a rotor near-wake to an impinging wake of an inlet guide vane (IGV) located upstream of the rotor blade. Two-dimensional particle image velocimetry (PIV) measurements are performed in a refractive index matched turbomachinery facility that provides unobstructed view of the entire flow field. Data obtained at several rotor phases enable us to examine the IGV-wake-induced changes to the structure of the boundary layer and how these changes affect the flow and turbulence within the rotor near-wake. We focus on the suction surface boundary layer, near the blade trailing edge, but analyze the evolution of both the pressure and suction sides of the near-wake. During the IGV-wake impingement, the boundary layer becomes significantly thinner, with lower momentum thickness and more stable profile compared with other phases at the same location. Analysis of available terms in the integral momentum equation indicates that the phase-averaged unsteady term is the main contributor to the decrease in momentum thickness within the impinging wake. Thinning of the boundary/shear layer extends into the rotor near-wake, making it narrower and increasing the phase-averaged shear velocity gradients and associated turbulent kinetic energy (TKE) production rate. Consequently, the TKE increases during wake thinning, with as much as 75% phase-dependent variations in its peak magnitude. This paper introduces a new way of looking at the PIV data by defining a wake-oriented coordinate system, which enables to study the structure of turbulence around the trailing edge in great detail.

1.
Patel
,
M. H.
, 1977, “
On Turbulent Boundary Layers in Oscillatory Flows
,”
Proc. R. Soc. London, Ser. A
0950-1207,
353
, pp.
121
144
.
2.
Dibelius
,
G. H.
, and
Ahlers
,
E.
, 1992, “
Influence of Periodically Unsteady Wake Flow on the Flow Separation in Blade Channels
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
108
113
.
3.
Holland
,
R. M.
, and
Evans
,
R. L.
, 1996, “
The Effects of Periodic Wake Structures on Turbulent Boundary Layers
,”
J. Fluids Struct.
0889-9746,
10
(
3
), pp.
269
280
.
4.
Gete
,
Z.
, and
Evans
,
R. L.
, 2003, “
An Experimental Investigation of Unsteady Turbulent-Wake/Boundary-Layer Interaction
,”
J. Fluids Struct.
0889-9746,
17
(
1
), pp.
43
55
.
5.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. W.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines: Part 1 of 4: Composite Picture
,”
ASME J. Turbomach.
0889-504X,
119
(
1
), pp.
114
127
.
6.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. W.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines: Part 2 of 4: Compressors
,”
ASME J. Turbomach.
0889-504X,
119
(
3
), pp.
426
444
.
7.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. W.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines: Part 3 of 4: LP Turbines
,”
ASME J. Turbomach.
0889-504X,
119
(
2
), pp.
225
237
.
8.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. W.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines: Part 4 of 4: Computations and Analysis
,”
ASME J. Turbomach.
0889-504X,
119
(
1
), pp.
128
139
.
9.
Mailach
,
R.
, and
Vogeler
,
V.
, 2004, “
Aerodynamic Blade Row Interactions in an Axial Compressor—Part I: Unsteady Boundary Layer Development
,”
ASME J. Turbomach.
0889-504X,
126
(
1
), pp.
35
44
.
10.
Pfeil
,
H.
, and
Herbst
,
R.
, 1979, “
Transition Procedure of Instationary Boundary Layers
,” ASME Paper No. 79-GT-128.
11.
Mayle
,
R. E.
, and
Dullenkopf
,
K.
, 1990, “
A Theory for Wake-Induced Transition
,”
ASME J. Turbomach.
0889-504X,
112
(
2
), pp.
188
195
.
12.
Hodson
,
H. P.
,
Addison
,
J. S.
, and
Shepherson
,
C. A.
, 1992, “
Models for Unsteady Wake-Induced Transition in Axial Turbomachines
,”
J. Phys. III
1155-4320,
2
, pp.
545
574
.
13.
Cho
,
N. -H.
,
Liu
,
X.
,
Rodi
,
W.
, and
Schonung
,
B.
, 1993, “
Calculation of Wake-Induced Unsteady Flow in a Turbine Cascade
,”
ASME J. Turbomach.
0889-504X,
115
(
4
), pp.
675
686
.
14.
Wu
,
X.
, and
Durbin
,
P. A.
, 2000, “
Boundary Layer Transition Induced by Periodic Wakes
,”
ASME J. Turbomach.
0889-504X,
122
(
3
), pp.
442
449
.
15.
Schobeiri
,
M. T.
,
Read
,
K.
, and
Lewalle
,
J.
, 2003, “
Effect of Unsteady Wake Passing Frequency on Boundary Layer Transition, Experimental Investigation, and Wavelet Analysis
,”
ASME J. Fluids Eng.
0098-2202,
125
(
2
), pp.
251
266
.
16.
Liu
,
X.
, and
Rodi
,
W.
, 1991, “
Experiments on Transitional Boundary Layers With Wake-Induced Unsteadiness
,”
J. Fluid Mech.
0022-1120,
231
, pp.
229
256
.
17.
Schobeiri
,
M. T.
, and
Oztürk
,
B.
, 2003, “
On the Physics of the Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions
,” ASME Paper No. 2003-GT-38917.
18.
Schulte
,
V.
, and
Hodson
,
H. P.
, 1994 “
Wake-Separation Bubble Interaction in Low Pressure Turbines
,”
AIAA, ASME, SAE, and ASEE 30th Joint Propulsion Conference and Exhibit
, Indianapolis, IN, Jun. 27–29, AIAA Paper No. 94-2931.
19.
Stieger
,
R. D.
, and
Hodson
,
H. P.
, 2003, “
The Transition Mechanism of Highly-Loaded LP Turbine Blades
,” ASME Paper No. GT-2003-38304.
20.
Soranna
,
F.
,
Chow
,
Y. C.
,
Uzol
,
O.
, and
Katz
,
J.
, 2006, “
The Effect of Inlet Guide Vanes Wake Impingement on the Flow Structure and Turbulence Around a Rotor Blade
,”
ASME J. Turbomach.
0889-504X,
128
(
1
), pp.
82
95
.
21.
Chow
,
Y. -C.
,
Uzol
,
O.
,
Katz
,
J.
, and
Meneveau
,
C.
, 2005, “
Decomposition of the Spatially Filtered and Ensemble Averaged Kinetic Energy, the Associated Fluxes and Scaling Trends in a Rotor Wake
,”
Phys. Fluids
1070-6631,
17
(
8
), p.
085102
.
22.
Soranna
,
F.
,
Chow
,
Y. C.
,
Uzol
,
O.
, and
Katz
,
J.
, 2008, “
Turbulence Within a Turbomachine Rotor Wake Subject to Nonuniform Contraction
,”
AIAA J.
0001-1452,
46
(
11
), pp.
2687
2702
.
23.
Soranna
,
F.
,
Chow
,
Y. C.
,
Uzol
,
O.
, and
Katz
,
J.
, 2006 “
The Effect of IGV Wake Impingement on a Rotor Boundary Layer
,”
Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, Jan. 8–12, AIAA Paper No. 2006-1305.
24.
Uzol
,
O.
,
Chow
,
Y. -C.
,
Katz
,
J.
, and
Meneveau
,
C.
, 2002, “
Unobstructed PIV Measurements Within an Axial Turbo-Pump Using Liquid and Blades With Matched Refractive Indices
,”
Exp. Fluids
0723-4864,
33
(
6
), pp.
909
919
.
25.
Golubev
,
V. V.
, and
Atassi
,
H. M.
, 1996, “
Sound Propagation in an Annular Duct With Mean Potential Swirling Flow
,”
J. Sound Vib.
0022-460X,
198
(
5
), pp.
601
616
.
26.
Roth
,
G. I.
,
Mascenik
,
D. T.
, and
Katz
,
J.
, 1999, “
Measurements of the Flow Structure and Turbulence Within a Ship Bow Wave
,”
Phys. Fluids
1070-6631,
11
(
11
), pp.
3512
3523
.
27.
Roth
,
G. I.
, and
Katz
,
J.
, 2001, “
Five Techniques for Increasing the Speed and Accuracy of PIV Interrogation
,”
Meas. Sci. Technol.
0957-0233,
12
, pp.
238
245
.
28.
Hodson
,
H. P.
, and
Dawes
,
W. N.
, 1998, “
On the Interpretation of Measured Profile Losses in Unsteady Wake-Turbine Blade Interaction Studies
,”
ASME J. Turbomach.
0889-504X,
120
(
2
), pp.
276
284
.
29.
Meyer
,
R. N.
, 1958, “
The Effect of Wakes on the Transient Pressure and Velocity Distribution in Turbomachines
,”
ASME J. Basic Eng.
0021-9223,
80
, pp.
1544
1552
.
30.
Wheeler
,
A.
,
Miller
,
R.
, and
Hodson
,
H.
, 2007, “
The Effect of Wake Induced Structures on Compressor Boundary-Layers
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
705
712
.
31.
So
,
R. M. C.
, and
Mellor
,
G. L.
, 1973, “
Experiment on Convex Curvature Effects in Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
60
, pp.
43
62
.
32.
Hah
,
C.
, and
Lakshminarayana
,
B.
, 1982, “
Measurements and Prediction of Mean Velocity and Turbulence Structure in the Near Wake of an Airfoil
,”
J. Fluid Mech.
0022-1120,
115
, pp.
251
282
.
33.
Pope
,
S. B.
, 2000,
Turbulent Flows
,
Cambridge University
,
Cambridge, UK
.
You do not currently have access to this content.