This paper describes the assessment of CFD simulations for the film cooling on the blade leading edge with circular cooling holes in order to contribute durability assessment of the turbine blades. Unsteady RANS applying a k-ε-v2-f turbulence model and the Spalart and Allmaras turbulence model and detached-eddy simulation (DES) based on the Spalart and Allmaras turbulence model are addressed to solve thermal convection. The CFD calculations were conducted by simulating a semicircular model in the wind tunnel experiments. The DES and also the k-ε-v2-f model evaluate explicitly the unsteady fluctuation of local temperature by the vortex structures, so that the predicted film cooling effectiveness is comparatively in agreement with the measurements. On the other hand, the predicted temperature fields by the Spalart and Allmaras model are less diffusive than the DES and the k-ε-v2-f model. In the present turbulence modeling, the DES only predicts the penetration of main flow into the film cooling hole but the Spalart and Allmaras model is not able to evaluate the unsteadiness and the vortex structures clearly, and overpredict film cooling effectiveness on the partial surface.

1.
Mick
,
W. J.
, and
Mayle
,
R. E.
, 1988, “
Stagnation Film Cooling and Heat Transfer Including Its Effect Within the Hole Pattern
,”
ASME J. Turbomach.
0889-504X,
110
, pp.
66
72
.
2.
Mehendale
,
A. B.
, and
Han
,
J. C.
, 1992, “
Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
707
715
.
3.
Ou
,
S.
,
Mehendale
,
A. B.
, and
Han
,
J. C.
, 1992, “
Influence of High Mainstream Turbulence on Leading Edge Film Cooling Heat Transfer: Effect of Film Hole Row Location
,”
ASME J. Turbomach.
0889-504X,
114
, pp.
716
723
.
4.
Ekkad
,
S. V.
,
Han
,
J. C.
, and
Du
,
H.
, 1998, “
Detailed Film Cooling Measurements on a Cylinder Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
799
807
.
5.
Johnston
,
C. A.
,
Bogard
,
D. G.
, and
McWaters
,
M. A.
, 1999, “
Highly Turbulent Mainstream Effects on Film Cooling of a Simulated Airfoil Leading Edge
,”
ASME
Paper No. 99-GT-261.
6.
Funazaki
,
K.
,
Yokota
,
M.
, and
Yamawaki
,
S.
, 1997, “
Effect of Periodic Wake Passing on Film Effectiveness of Discrete Cooling Holes Around the Leading Edge of a Blunt Body
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
292
301
.
7.
Cruse
,
M. W.
,
Yuki
,
U. M.
, and
Bogard
,
D. G.
, 1997, “
Investigation of Various Parametric Influences on Leading Edge Film Cooling
,”
ASME
Paper No. 97-GT-296.
8.
Reiss
,
H.
, and
Bölcs
,
A.
, 2000, “
Experimental Study of Showerhead Cooling on a Cylinder Comparing Several Configurations Using Cylindrical and Shaped Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
161
169
.
9.
Ou
,
S.
, and
Rivir
,
R. B.
, 2001, “
Leading Edge Film Cooling Heat Transfer With High Free Stream Turbulence Using a Transient Liquid Crystal Image Method
,”
Int. J. Heat Fluid Flow
0142-727X,
22
, pp.
614
623
.
10.
Ahn
,
J.
,
Schobeiri
,
M. T.
,
Han
,
J. C.
, and
Moon
,
H. K.
, 2005, “
Film Cooling Effectiveness on the Leading Edge of a Rotating Film-Cooled Blade Using Pressure Sensitive Paint
,” Paper No. GT2005-68344.
11.
Lu
,
Y.
,
Allison
,
D.
, and
Ekkad
,
S. V.
, 2006, “
Influence of Hole Angel and Shaping on Leading Edge Showerhead Film Cooling
,” Paper No. GT2006-90370.
12.
Falcoz
,
C.
,
Weigand
,
B.
, and
Ott
,
P.
, 2006, “
Experimental Investigations on Showerhead Cooling on a Blunt Body
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
1287
1298
.
13.
Walters
,
D. K.
, and
Leylek
,
J. H.
, 1997, “
A Systematic Computational Methodology Applied to a Three-Dimensional Film-Cooling Flowfield
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
777
785
.
14.
Walters
,
D. K.
, and
Leylek
,
J. H.
, 2000, “
A Detailed Analysis of Film-Cooling Physics: Part I—Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
102
112
.
15.
McGovern
,
K. T.
, and
Leylek
,
J. H.
, 2000, “
A Detailed Analysis of Film Cooling Physics: Part II—Compound-Angle Injection With Cylindrical Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
113
121
.
16.
Hyams
,
D. G.
, and
Leylek
,
J. H.
, 2000, “
A Detailed Analysis of Film Cooling Physics: Part III—Streamwise Injection With Shaped Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
122
132
.
17.
Brittingham
,
R. A.
, and
Leylek
,
J. H.
, 2000, “
A Detailed Analysis of Film Cooling Physics: Part IV—Compound-Angle Injection With Shaped Holes
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
133
145
.
18.
Hassan
,
J. S.
, and
Yavuzkurt
,
S.
, 2006, “
Comparison of Four Different Two-Equation Models of Turbulence in Predicting Film Cooling Performance
,” Paper No. GT2006-90860.
19.
Bacci
,
A.
, and
Facchini
,
B.
, 2007, “
Turbulence Modeling for the Numerical Simulation of Film and Effusion Cooling Flows
,” Paper No. GT2007-27182.
20.
Yavuzkurt
,
S.
, and
Hassan
,
J. S.
, 2007, “
Evaluation of Two-Equation Models of Turbulence in Predicting Film Cooling Performance Under High Free Stream Turbulence
,” Paper No. GT2007-27184.
21.
Yavuzkurt
,
S.
, and
Habte
,
M.
, 2008, “
Effect of Computational Grid on Performance of Two-Equation Models of Turbulence for Film Cooling Applications
,” Paper No. GT2008-50153.
22.
Harrison
,
K. L.
, and
Bogard
,
D. G.
, 2008, “
Comparison of RANS Turbulence Models for Prediction of Film Cooling Performance
,” Paper No. GT2008-51423.
23.
Tyagi
,
M.
, and
Acharya
,
S.
, 2003, “
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
734
742
.
24.
Guo
,
X.
,
Meinke
,
M.
, and
Schröder
,
W.
, 2006, “
Large-Eddy Simulation of Film Cooling Flows
,”
Comput. Fluids
0045-7930,
35
(
6
), pp.
587
606
.
25.
Lin
,
Y. -L.
,
Stephens
,
M. A.
, and
Shih
,
T. I.-P.
, 1997, “
Computations of Leading-Edge Film Cooling With Injection Through Rows of Compound Angle Holes
,”
ASME
Paper No. 97-GT-298.
26.
Martin
,
C. A.
, and
Thole
,
K. A.
, 1997, “
A CFD Benchmark Study: Leading-Edge Film Cooling With Compound Angle Injection
,”
ASME
Paper No. 97-GT-297.
27.
Thakur
,
S.
,
Wright
,
J.
, and
Shyy
,
W.
, 1997, “
Computation of Leading-Edge Film Cooling Flow
,”
ASME
Paper No. 97-GT-381.
28.
Chernobrovkin
,
A.
, and
Lakshminarayana
,
B.
, 1998, “
Numerical Simulation and Aerothermal Physics of Leading Edge Film Cooling
,”
ASME
Paper No. 98-GT-504.
29.
Lin
,
Y. L.
, and
Shih
,
T. I.-P.
, 2001, “
Film Cooling of a Cylindrical Leading Edge With Injection Through Rows of Compound-Angle Holes
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
645
654
.
30.
York
,
W. D.
, and
Leylek
,
J. H.
, 2002, “
Leading-Edge Film-Cooling Physics: Part I—Adiabatic Effectiveness
,” Paper No. GT-2002-30166.
31.
York
,
W. D.
, and
Leylek
,
J. H.
, 2002, “
Leading-Edge Film-Cooling Physics: Part II—Heat Transfer Coefficient
,” Paper No. GT-2002-30167.
32.
York
,
W. D.
, and
Leylek
,
J. H.
, 2002, “
Leading-Edge Film-Cooling Physics: Part III—Diffused Hole Effectiveness
,” Paper No. GT-2002-30520.
33.
Sakai
,
E.
,
Takahashi
,
T.
,
Funazaki
,
K.
,
Salleh
,
H. B.
, and
Watanabe
,
K.
, 2009, “
Numerical Study on Flat Plate and Leading Edge Film Cooling
,” Paper No. GT2009-59517.
34.
Rozati
,
A.
, and
Tafti
,
D. K.
, 2007, “
Large Eddy Simulation of Leading Edge Film Cooling Part—I: Computational Domain and Effect of Coolant Pipe Inlet Condition
,” Paper No. GT2007-27689.
35.
Rozati
,
A.
, and
Tafti
,
D. K.
, 2007, “
Large Eddy Simulation of Leading Edge Film Cooling Part—II: Heat Transfer and Effect of Blowing Ratio
,” Paper No. GT2007-27690.
36.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
, 2007, “
Effect of Blowing Ratio in the Near Stagnation Region of a Three-Row Leading Edge Film Cooling Geometry Using Large Eddy Simulations
,” Paper No. GT2009-59325.
37.
Durbin
,
P. A.
, 1995, “
Separated Flow Computations With the k-ε-v-Squared Model
,”
AIAA J.
0001-1452,
33
(
4
), pp.
659
664
.
38.
Lien
,
F. -S.
, and
Kalitzin
,
G.
, 2001, “
Computations of Transonic Flow With the v2-f Turbulence Model
,”
Int. J. Heat Fluid Flow
0142-727X,
22
(
1
), pp.
53
61
.
39.
Spalart
,
P.
, and
Allmaras
,
S.
, 1992, “
A One-Equation Turbulence Model for Aerodynamic Flows
,” Paper No. AIAA-92-0439.
40.
Shur
,
M.
,
Spalart
,
P. R.
,
Strelets
,
M.
, and
Travin
,
A.
, 1999,“
Detached-Eddy Simulation of an Airfoil at High Angle of Attack
,”
Fourth International Symposium on Engineering Turbulence Modeling and Experiments Corsica
, France.
41.
Patankar
,
S. V.
, and
Spalding
,
D. B.
, 1972, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
1787
1806
.
42.
van Leer
,
B.
, 1979, “
Toward the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov’s Method
,”
J. Comput. Phys.
0021-9991,
32
, pp.
101
136
.
43.
Takahashi
,
T.
,
Funazaki
,
K.
,
Salleh
,
H. B.
,
Sakai
,
E.
, and
Watanabe
,
K.
, 2009, “
Evaluation of CFD Analysis for Film Cooling on Gas Turbine Blade-Analysis of Cooling Performance on a Blade Leading Edge
,” CRIEPI Report No. M08017 (in Japanese).
44.
Sakai
,
E.
,
Takahashi
,
T.
,
Funazaki
,
K.
, and
Salleh
,
H. B.
, 2009, “
Evaluation of CFD Analysis for Film Cooling on Gas Turbine Blade-Analysis of Flat Plate Configuration
,” CRIEPI Report No. M08007 (in Japanese).
45.
Funazaki
,
K.
, and
Salleh
,
H. B.
, 2008, “
Extensive Studies on Internal and External Heat Transfer Characteristics of Integrated Impingement Cooling Structure for HP Turbines
,”
ASME
Paper No. GT2008-50202.
You do not currently have access to this content.