Abstract

The present experimental study is part of a comprehensive analysis accounting for heat transfer and aerodynamic losses on a highly loaded low pressure turbine blade with varying surface roughness. Whereas Part I focuses on heat transfer measurements at airfoil midspan with different deterministic surface roughnesses, Part II investigates surface roughness effects on aerodynamic losses of the same airfoil. A set of different arrays of deterministic roughness (the same as used in Part I) is investigated in these experiments. The height and eccentricity of the roughness elements are varied, showing the combined influence of roughness height and anisotropy on the losses produced in the boundary layers. It is shown that the boundary layer loss is dominated by the suction side. Therefore, the investigations focus on measurements of the suction side boundary layer thickness at midspan directly upstream of the trailing edge. The experiments are conducted at several freestream turbulence levels (Tu1=1.410.1%) and different Reynolds numbers. The measurements reveal that suction side boundary layer thickness is increased by up to 190% if surface roughness shifts the transition onset upstream. However, in some cases, at low Reynolds numbers and freestream turbulence, surface roughness suppresses boundary layer separation and decreases the trailing edge boundary layer thickness by up to 30%.

1.
Denton
,
J. D.
, 1993, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
0889-504X,
115
, pp.
621
653
.
2.
Mee
,
D. J.
,
Baines
,
N. C.
,
Oldfield
,
M. L. G.
, and
Dickens
,
T. E.
, 1990, “
An Examination of the Contributions to Loss on a Transonic Turbine Blade in Cascade
,”
ASME
Paper No. 90-GT-264.
3.
Taylor
,
R. P.
, 1990, “
Surface Roughness Measurements on Gas Turbine Blades
,”
ASME J. Turbomach.
0889-504X,
112
, pp.
175
180
.
4.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
, 2001, “
The Many Faces of Turbine Surface Roughness
,”
ASME
Paper No. 2001-GT-0163.
5.
Hosni
,
M. H.
, 1989, “
Measurement and Calculation of Surface Roughness Effects on Turbulent Flow and Heat Transfer
,” Ph.D. thesis, Mississippi State University, Mississippi State, MS.
6.
Bons
,
J. P.
, 2002, “
St and cf Augmentation for Real Turbine Roughness With Elevated Freestream Turbulence
,”
ASME
Paper No. GT-2002-30198.
7.
Abuaf
,
N.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
, 1997, “
Effects of Surface Roughness on Heat Transfer and Aerodynamic Performance of Turbine Airfoils
,”
ASME
Paper No. 97-GT-10.
8.
Dees
,
J. E.
, and
Bogard
,
D. G.
, 2007, “
Effects of Regular and Random Roughness on the Heat Transfer and Skin Friction Coefficient on the Suction Side of a Gas Turbine Vane
,”
ASME
Paper No. GT-2007-27285.
9.
Bammert
,
K.
, and
Sandstede
,
H.
, 1980, “
Measurements of the Boundary Layer Development Along a Turbine Blade With Rough Surfaces
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
978
983
.
10.
Zhang
,
Q.
,
Lee
,
S. W.
, and
Ligrani
,
P. M.
, 2004, “
Effects of Surface Roughness and Turbulence Intensity on the Aerodynamic Losses Produced by the Suction Surface of a Simulated Turbine Airfoil
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
257
265
.
11.
Zhang
,
Q.
,
Goodro
,
M.
,
Ligrani
,
P. M.
,
Trindade
,
R.
, and
Sreekanth
,
S.
, 2005, “
Influence of Surface Roughness on the Aerodynamic Losses of a Turbine Vane
,”
ASME
Paper No. GT2005-68832.
12.
Zhang
,
X. F.
,
Vera
,
M.
,
Hodson
,
H.
, and
Harvey
,
N.
, 2005, “
Separation and Transition Control on an Aft-Loaded Ultra-High-Lift LP Turbine Blade at Low Reynolds Numbers: Low-Speed Investigation
,”
ASME
Paper No. GT2005-68892.
13.
Vera
,
M.
,
Zhang
,
X. F.
,
Hodson
,
H.
, and
Harvey
,
N.
, 2005, “
Separation and Transition Control on an Aft-Loaded Ultra-High-Lift LP Turbine Blade at Low Reynolds Numbers: High-Speed Validation
,”
ASME
Paper No. GT2005-68893.
14.
Hodson
,
H.
,
Montomoli
,
F.
, and
Haselbach
,
F.
, 2008, “
Effect of Roughness and Unsteadiness on the Performance of a New LPT Blade at Low Reynolds Numbers
,”
ASME
Paper No. GT2008-50488.
15.
Mayle
,
R. E.
, 1991, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
509
537
.
16.
Stripf
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2005, “
Surface Roughness Effects on External Heat Transfer of a HP Turbine Vane
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
200
208
.
17.
Stripf
,
M.
,
Schulz
,
A.
, and
Bauer
,
H. -J.
, 2006, “
Modeling of Rough Wall Boundary Layer Transition and Heat Transfer on Turbine Airfoils
,”
ASME
Paper No. GT-2006-90316.
18.
Stripf
,
M.
,
Schulz
,
A.
,
Bauer
,
H. -J.
, and
Wittig
,
S.
, 2009, “
Extended Models for Transitional Rough Wall Boundary Layers With Heat Transfer—Part I: Model Formulations
,”
ASME J. Turbomach.
0889-504X,
131
(
3
), p.
031016
.
19.
Stripf
,
M.
,
Schulz
,
A.
,
Bauer
,
H. -J.
, and
Wittig
,
S.
, 2009, “
Extended Models for Transitional Rough Wall Boundary Layers With Heat Transfer—Part II: Model Validation and Benchmarking
,”
ASME J. Turbomach.
0889-504X,
131
(
3
), p.
031017
.
20.
Stripf
,
M.
, 2007, “
Einfluss der Oberflächenrauigkeit auf die transitionale Grenzschicht an Gasturbinenschaufeln
,”
Forschungsberichte aus dem Institut für Thermische Strömungsmaschinen
,
Logos
,
Berlin
, Vol.
38
.
21.
McClain
,
S. T.
,
Hodge
,
B. K.
, and
Bons
,
J. P.
, 2003, “
Predicting Skin Friction for Turbulent Flow Over Randomly-Rough Surfaces Using the Discrete-Element Method: Part I—Surface Characterization
,”
Joint Fluids Engineering Conference
, Honolulu, HI, Paper No. FEDSM2003-45411.
22.
McClain
,
S. T.
,
Hodge
,
B. K.
, and
Bons
,
J. P.
, 2003, “
Predicting Skin Friction for Turbulent Flow Over Randomly-Rough Surfaces Using the Discrete-Element Method: Part II—Skin Friction Validation
,”
Joint Fluids Engineering Conference
, Honolulu, HI, Paper No. FEDSM2003-45412.
23.
Roach
,
P. E.
, 1987, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
0142-727X,
8
, pp.
82
92
.
24.
Schiele
,
R.
, 1999, “
Die transitionale Grenzschicht an Gasturbinenschaufeln: Experimentelle Untersuchungen und Entwicklung eines neuen Verfahrens zur numerischen Beschreibung des laminar-turbulenten Umschlags
,”
Forschungsberichte aus dem Institut für Thermische Strömungsmaschinen
,
Logos
,
Berlin
, Vol.
10
.
25.
Stripf
,
M.
,
Schulz
,
A.
, and
Bauer
,
H. -J.
, 2007, “
Roughness and Secondary Flow Effects on Turbine Vane External Heat Transfer
,”
J. Propul. Power
0748-4658,
23
, pp.
283
291
.
26.
Waigh
,
D. R.
, and
Kind
,
R. J.
, 1998, “
Improved Aerodynamic Characterization of Regular Three-Dimensional Roughness
,”
AIAA J.
0001-1452,
36
(
6
), pp.
1117
1119
.
27.
Sigal
,
A.
, and
Danberg
,
J. E.
, 1990, “
New Correlation of Roughness Density Effect on the Turbulent Boundary Layer
,”
AIAA J.
0001-1452,
28
(
3
), pp.
554
556
.
28.
van Rij
,
J. A.
,
Belnap
,
B. J.
, and
Ligrani
,
P. M.
, 2002, “
Analysis and Experiments on Three-Dimensional, Irregular Surface Roughness
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
671
677
.
29.
Koch
,
C. C.
, and
Smith
,
L. H.
, 1976, “
Loss Sources and Magnitudes in Axial-Flow Compressors
,”
ASME J. Eng. Power
0022-0825,
98
, pp.
411
424
.
30.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
77
, pp.
3
8
.
31.
Lorenz
,
M.
,
Stripf
,
M.
,
Schulz
,
A.
, and
Bauer
,
H. -J.
, 2008, “
External Heat Transfer Measurements on a Turbine Airfoil in a Linear Cascade
,”
Proceedings of the 19th International Symposium on Transport Phenomena
, Reykjavik, Iceland.
32.
Lorenz
,
M.
,
Schulz
,
A.
, and
Bauer
,
H. -J.
, 2009, “
An Experimental Study of Airfoil and Endwall Heat Transfer in a Linear Turbine Blade Cascade—Secondary Flow and Surface Roughness Effects
,”
International Symposium on Heat Transfer in Gas Turbine Systems
, Antalya, Turkey, Aug. 9–14.
33.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2006, “
Effects of Surface-Roughness Geometry on Separation-Bubble Transition
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
349
356
.
You do not currently have access to this content.