The exit flow field of the fan root of large turbofan engines defines the inlet conditions to the core compressor. This in turn could have significant impact to the performance of the core compressor. This study is aimed to resolve two related issues concerning the impact of the fan root flow on the core compressor performance: to establish the effect of an increased loss at the inlet on the engine specific fuel consumption (SFC) and to assess the effect of the radial distribution of the fan root flow on the engine performance. With understanding of these issues, the geometric parameters and design details which can produce a more uniform core flow at the exit of the fan stage module can be identified. The fan root flow is analyzed with methods of different complexity and fidelity. A simple cycle analysis is used to assess the impact on engine SFC of a stagnation pressure deficit at the fan root; a throughflow code is used for the preliminary study of the curvature effect of the root flow path, and 3D RANS CFD calculations are then used to simulate the flow path from the inlet of the fan to the first stage of the core compressor. The adequacy of the application of the numerical code in this case has been assessed and confirmed by the comparison with the experimental data for two rig configurations. The results of this study show that the flow at the fan hub region is very complex and dominated by 3D effects. The interaction of the secondary flow with real geometries, such as leakage flows, is found to have a strong detrimental effect on the core performance. The curvature of the hub end wall is a key parameter controlling the fan root flow topology; it influences the strength of the secondary flow, the spanwise distribution of the flow, and its sensitivity to leakage flow. With this understanding, it is possible to redesign of the fan hub flow path to reduce the loss generation by a significant amount.

References

1.
Hansen
,
A. G.
, and
Herzig
,
H. Z.
, 1965, “
Secondary Flows and Three-Dimensional Boundary Layer Effects, Chapter 15
,” NASA-SP36.
2.
Horlock
,
J. H.
, and
Lakshminarayana
,
B.
, 1973, “
Secondary Flows: Theory, Experiment, and Application in Turbomachinery Aerodynamics
,”
Ann. Rev. Fluid Mech.
,
5
, pp.
247
280
.
3.
Gummer
,
V.
,
Wenger
,
U.
, and
Kau
,
H. P.
, 2001, “
Using Sweep and Dihedral to Control Three-Dimensional Flow in Transonic Stators of Axial Compressors
,”
ASME J. Turbomach.
,
123
(
1
), pp.
40
48
.
4.
Smith
,
L. H.
, and
Yeh
,
H.
, 1963, “
Sweep and Dihedral Effects in Axial-Flow Turbomachinery
,”
ASME J. Basic Eng.
,
85
, pp.
401
416
.
5.
Gallimore
,
S. J.
,
Bolger
,
J. J.
,
Cumpsty
,
N. A.
,
Taylor
,
M. J.
,
Wright
,
P. I.
, and
Place
,
J. M. M.
, 2002, “
The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading - Part I: University Research and Methods Development
,”
ASME J. Turbomach.
,
124
, pp.
521
532
.
6.
Gallimore
,
S. J.
,
Bolger
,
J. J.
,
Cumpsty
,
N. A.
,
Taylor
,
M. J.
,
Wright
,
P. I.
, and
Place
,
J. M. M.
, 2002, “
The Use of Sweep and Dihedral in Multistage Axial Flow Compressor Blading - Part II: Low and High Speed Designs and Test Verification
,”
ASME J. Turbomach.
,
124
, pp.
533
541
.
7.
Legendre
,
R.
, and
Werlè
,
H.
, 2001, “
Toward the Elucidation of Three-Dimensional Separation
,”
Ann. Rev. Fluid Mech.
,
33
, pp.
129
154
.
8.
Tobak
,
M.
, and
Peake
,
D. J.
, 1982, “
Topology of Three-Dimensional Separated Flows
,”
Ann. Rev. Fluid Mech.
,
14
, pp.
61
85
.
9.
Perry
,
A. E.
, and
Fairlie
,
B. D.
, 1975, “
Critical Points in Flow Patterns
,”
Adv. Geophys.
,
18
(
2
), pp.
299
315
.
10.
Perry
,
A. E.
, and
Chong
,
M. S.
, 1987, “
A Description of Eddying Motions and Flow Patterns Using Critical-Point Concept
,”
Ann. Rev. Fluid Mech.
,
19
, pp.
125
155
.
11.
Davey
,
A.
, 1960, “
Boundary-Layer Flow at a Saddle Point of Attachment
,”
J. Fluid Mech.
,
10
, pp.
593
610
.
12.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
, 2005, “
Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
127
, pp.
331
339
.
13.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
, 2008, “
Control of Three-Dimensional Separations in Axial Compressors by Tailored Boundary Layer Suction
,”
ASME J. Turbomach.
,
130
, p.
011004
.
14.
Cumpsty
,
N. A.
, 2003,
Jet Propulsion: A Simple Guide to the Aerodynamic and Thermodynamic Design and Performance of Jet Engines
,
Cambridge University Press
,
Cambridge, UK
.
15.
Visser
,
W. P. J.
,
Kogenhop
,
O.
, and
Oostveen
,
M.
, 2004, “
A Generic Approach for Gas Turbine Adaptive Modeling
,”
Proceedings of the ASME Turbo Expo
, Paper No. GT2004-53721.
16.
Howard
,
M. A.
, 1999, “
Introduction to Streamline Curvature Q263
,” Rolls Royce plc lecture.
17.
Lapworth
,
B.
, 2004, “
HYDRA-CFD: A Framework for Collaborative CFD Development
,”
International Conference on Scientific and Engineering Computation
, Paper No. IC-SEC 2004.
18.
Denton
,
J. D.
, 1993, “
Loss Mechanisms in Turbomachinery
,”
ASME J.Turbomach.
,
115
, pp.
621
656
.
19.
Shapiro
,
A. H.
, 1953,
The Dynamics and Thermodynamics of Compressible Fluid Flow
,
Wiley
,
New York
.
You do not currently have access to this content.