First stage, nozzle guide vanes and accompanying endwalls are extensively cooled by the use of film cooling through discrete holes and leakage flow from the combustor-turbine interface gap. While there are cooling benefits from the interface gap, it is generally not considered as part of the cooling scheme. This paper reports on the effects of the position and orientation of a two-dimensional slot on the cooling performance of a nozzle guide vane endwall. In addition to surface thermal measurements, time-resolved, digital particle image velocimetry (TRDPIV) measurements were performed at the vane stagnation plane. Two slot orientations, 90 deg and 45 deg, and three streamwise positions were studied. Effectiveness results indicate a significant increase in area averaged effectiveness for the 45 deg slot relative to the 90 deg orientation. Flowfield measurements show dramatic differences in the horseshoe vortex formation.

References

1.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
, 2007, “
The Effects of Varying the Combustor-Turbine Gap
,”
J. Turbomach.
,
129
, pp.
756
764
.
2.
Kost
,
F.
, and
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flowfield: Part I-Aerodynamic Measurements
,”
J. Turbomach.
,
123
, pp.
709
719
.
3.
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flowfield: Part II-Heat Transfer and Film-Cooling Effectiveness
,”
J. Turbomach.
,
123
, pp.
720
729
.
4.
Kost
,
F.
, and
Mullaert
,
A.
, 2006, “
Migration of Film-Coolant from Slot and Hole Ejection at a Turbine Vane Endwall
,” Paper No. GT2006-90355.
5.
Lynch
,
S. P.
, and
Thole
,
K. A.
, 2008, “
The Effect of Combustor-Turbine Interface Gap Leakage on the Endwall Heat Transfer for a Nozzle Guide Vane
,”
J. Turbomach.
,
130
, p.
041019
.
6.
Knost
,
D. G.
, and
Thole
,
K. A.
, 2005, “
Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First Stage Vane
,”
J. Turbomach.
,
127
, pp.
297
305
.
7.
Kang
,
M. B.
,
Kohli
,
A.
, and
Thole
,
K. A.
, 1999, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
J. Turbomach.
,
121
, pp.
558
568
.
8.
Radomsky
,
R. W.
, and
Thole
,
K. A.
, 2000, “
High Freestream Turbulence Effects on Endwall Heat Transfer for a Gas Turbine Stator Vane
,”
J. Turbomach.
,
122
, pp.
699
708
.
9.
Praisner
,
T. J.
, and
Smith
,
C. R.
, 2006, “
The Dynamics of the Horseshoe Vortex and Associated Endwall Heat Transfer - Part I: Temporal Behavior
,”
J. Turbomach.
,
128
, pp.
747
754
.
10.
Hada
,
S.
,
Takeishi
,
K.
,
Oda
,
Y.
,
Mori
,
S.
, and
Nuta
,
Y.
, 2008, “
The Effect of Leading Edge Diameter on the Horseshoe Vortex and Endwall Heat Transfer
,” Paper No. GT2008-50892.
11.
Sabatino
,
D. R.
, and , and
Smith
C. R.
, 2009, “
Boundary Layer Influence on the Unsteady Horseshoe Vortex Flow and Surface Heat Transfer
,”
J. Turbomach.
,
131
, p.
011015
.
12.
Sundaram
,
N.
, and
Thole
,
K. A.
, 2009, “
Film-Cooling Flowfields with Trenched Holes on an Endwall
,”
J. Turbomach.
,
131
, p.
041007
.
13.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
, 2010, “
Effects of a Sloped Endwall on a Nozzle Guide Vane: Adiabatic Effectiveness Measurements
,”
J. Turbomach.
,
133
, p.
041007
.
14.
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Hada
,
S.
, 2010, “
Effects of an Axisymmetric Contoured Endwall on a Nozzle Guide Vane: Convective Heat Transfer Measurements
,”
J. Turbomach.
,
133
, p.
041008
.
15.
FLUENT (version 6.2.1)
,
Fluent Inc.
,
Lebanon, NH
.
16.
Ethridge
,
M. I.
,
Cutbirth
,
J. M.
, and
Bogard
,
D. G.
, 2000, “
Scaling of Performance for Varying Density Ratio Coolants on an Airfoil with Strong Curvature and Pressure Gradients
,”
J. Turbomach.
,
123
, p.
231
237
.
17.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, pp.
3
17
.
18.
Raffel
,
M.
,
Willert
,
C. E.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
, 2007,
Particle Image Velocimetry
, 2nd ed.,
Springer-Verlag
,
New York
.
19.
Westerweel
,
J.
, 1997, “
Fundamentals of Digital Particle Image Velocimetry
,”
Measurements Science and Technology
,
8
, pp.
1379
1392
.
20.
Adrian
,
R. J.
, 1991, “
Particle-Imaging Techniques for Experimental Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
23
, pp.
261
304
.
21.
Rockwell
,
D.
,
Magness
,
C.
,
Towfighi
,
J.
,
Akin
,
O.
, and
Corcoran
,
T.
, 1993, “
High Image-Density Particle Image Velocimetry Using Laser Scanning Techniques
,”
Exp. Fluids
,
14
, pp.
181
192
.
22.
Willert
,
C. E.
, and
Gharib
,
M.
, 1991, “
Digital Particle Image Velocimetry
,”
Exp. Fluids
,
10
, pp.
181
193
.
23.
LaVision
, 2008,
Product-Manual for Davis 7.2
,
LaVision GmbH
,
Gottingen, Germany
.
24.
Devenport
,
W. J.
, and
Simpson
,
R. L.
, 1989, “
Time- Dependent and Time-Averaged Turbulence Structure Near the Nose of a Wing-Body Junction
,”
J. Fluid Mech.
,
210
, pp.
23
55
.
You do not currently have access to this content.