This paper develops a discrete adjoint formulation for the constrained aerodynamic shape optimization in a multistage turbomachinery environment. The adjoint approach for viscous internal flow problems and the corresponding adjoint boundary conditions are discussed. To allow for a concurrent rotor/stator optimization, a nonreflective adjoint mixing-plane formulation is proposed. A sequential-quadratic programming algorithm is utilized to determine an improved airfoil shape based on the objective function gradient provided by the adjoint solution. The functionality of the proposed optimization method is demonstrated by the redesign of a midspan section of a single-stage transonic compressor. The objective is to maximize the isentropic efficiency while constraining the mass flow rate and the total pressure ratio.

References

1.
Lions
,
J.
,
1971
,
Optimal Control of Systems Governed by Partial Differential Equations
,
Springer-Verlag
,
New York
.
2.
Jameson
,
A.
, and
Reuther
,
J.
,
1994
Control Theory Based Airfoil Design Using the Euler Equations
,”
5th AIAA/USAF/NASA Symposium on Multidisciplinary Analysis and Optimization
, AIAA Paper No. 1994–4272.
3.
Jameson
,
A.
,
1995
Optimum Aerodynamic Design Using CFD and Control Theory
,”
AIAA 12th Computational Fluid Dynamics Conference
, AIAA Paper No. 1995–1729.
4.
Giles
,
M.
, and
Pierce
,
N.
,
2000
, “
An Introduction to the Adjoint Approach to Design
,”
Flow, Turbul. Combust
,
65
, pp.
393
415
.10.1023/A:1011430410075
5.
Kim
,
S.
,
Alonso
,
J.
, and
Jameson
,
A.
,
2004
, “
Multi-Element High-Lift Configuration Design Optimization Using Viscous Continuous Adjoint Method
,”
Journal of Aircr.
,
41
(
5
), pp.
1082
1097
.10.2514/1.17
6.
Nadarajah
,
S.
, and
Jameson
,
A.
,
2007
, “
Optimum Shape Design for Unsteady Flows With Time-Accurate Continuous and Discrete Adjoint Methods
,”
AIAA J.
,
45
(
7
), pp.
1478
1491
.10.2514/1.24332
7.
Nadarajah
,
S.
, and
Jameson
,
A.
,
2006
Optimum Shape Design for Unsteady Three-Dimensional Viscous Flows Using a Non-Linear Frequency Domain Method
,”
4th AIAA Applied Aerodynamics Conference
, AIAA Paper No. 2006–3455.
8.
Wu
,
H.
,
Liu
,
F.
, and
Tasi
,
H.
,
2005
, “
Aerodynamic Design of Turbine Blades Using an Adjoint Equation Method
,”
43rd AIAA Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 2005–1006.
9.
Papadimitriou
,
D.
, and
Giannakoglou
,
K.
,
2006
, “
A Continuous Adjoint Method for the Minimization of Losses in Cascade Viscous Flows
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
, AIAA Paper No. 2006–49.
10.
Papadimitriou
,
D.
, and
Giannakoglou
,
K.
,
2007
, “
Total Pressure Loss Minimization in Turbomachinery Casacdes Using a New Continious Adjoint Formulation
,”
J. Power Energy
,
221
, pp.
865
872
.10.1243/09576509JPE463
11.
Corral
,
R.
, and
Gisbert
,
F.
,
2008
, “
Profiled End Wall Design Using an Adjoint Navier-Stokes Solver
,”
ASME J. Turbomach.
,
130
(
2
), p. 021011.10.1115/1.2751143
12.
Luo
,
J.
,
Xiong
,
J.
,
Liu
,
F.
, and
McBean
,
I.
,
2011
, “
Three-Dimensional Aerodynamic Design Optimization of a Turbine Blade by Using an Adjoint Method
,”
ASME J. Turbomach.
,
133
(
1
), p. 011026.10.1115/1.4001166
13.
Li
,
H.
,
Song
,
L.
,
Li
,
Y.
, and
Feng
,
Z.
,
2011
, “
2D Viscous Aerodynamic Shape Design Optimization for Turbine Blades Based on Adjoint Method
,”
ASME J. Turbomach.
,
133
(
3
), p. 031014.10.1115/1.4001234
14.
Mousavi
,
A.
, and
Nadarajah
,
S.
,
2010
, “
Heat Transfer Optimization of Gas Turbine Blades Using an Adjoint Approach
,”
13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference
, AIAA Paper No. 2010–9048.
15.
Mousavi
,
A.
, and
Nadarajah
,
S.
,
2011
, “
Adjoint-Based Multidisciplinary Design Optimization of Cooled Gas Turbine Blades
,”
49th AIAA Aerospace Sciences Meeting
, AIAA Paper No. 2011–1131.
16.
Denton
,
J.
,
1992
, “
The Calculation of Three-Dimensional Viscous Flow Through Multistage Turbomachines
,”
ASME J. Turbomach.
,
114
(
1
), pp.
18
26
.10.1115/1.2927983
17.
Frey
,
C.
,
Kersken
,
H.-K.
, and
Nürnberger
,
D.
,
2009
, “
The Discrete Adjoint of a Turbomachinery RANS Solver
,”
ASME Turbo Expo 2009: Power for Land
, Sea and Air, ASME Paper No. 2009–GT-59062.
18.
Wang
,
D.
, and
He
,
L.
,
2010
, “
Adjoint Aerodynamic Design Optimization for Blades in Multistage Turbomachines—Part I: Methodology and Verification
,”
ASME J. Turbomach.
,
132
(
2
), p. 021011.
19.
Wang
,
D.
, and
He
,
L.
,
2010
, “
Adjoint Aerodynamic Design Optimization for Blades in Multistage Turbomachines—Part II: Validation and Application
,”
ASME J. Turbomach.
,
132
(
2
), p. 021012.
20.
Chima
,
R.
,
1998
, “
Calculation of Multistage Turbomachinery Using Steady Characteristic Boundary Conditions
,”
36th AIAA Aerospace Sciences Meeting
, AIAA Paper No. 1998–0968.
21.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
,
1981
, “
Numerical Solutions of the Euler Equations by Finite Volume Methods With Runge-Kutta Time-Stepping Schemes
,”
14th AIAA Fluid and Plasma Dynamic Conference
, AIAA Paper No. 1981–1259.
22.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
23.
Menter
,
F. R.
,
1982
, “
Improved Two-Equation k-ω Turbulence Models for Aerodynamic Flows
,” NASA Report No. TM 103975.
24.
Spalart
,
P. R.
, and
Rumsey
,
C. L.
,
2007
, “
Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations
,”
AIAA J.
,
45
(
10
), pp.
2544
2553
.10.2514/1.29373
25.
Giles
,
M.
,
1990
, “
Nonreflecting Boundary Conditions for Euler Equation Calculations
,”
AIAA J.
,
28
, pp.
2050
2058
.10.2514/3.10521
26.
Nadarajah
,
S.
, and
Jameson
,
A.
,
2000
, “
A Comparison of the Continuous and Discrete Adjoint Approach to Automatic Aerodynamic Optimization
,”
38th AIAA Aerospace Sciences Meeting
, AIAA Paper No. 2000–667.
27.
Nadarajah
,
S.
, and
Jameson
,
A.
,
2001
, “
Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Optimization
,”
15th AIAA Computational Fluid Dynamics Conference
, AIAA Paper No. 2001–2530.
28.
Nadarajah
,
S.
,
2003
, “
The Discrete Adjoint Approach to Aerodynamic Shape Optimization
,” Ph.D. thesis, Department of Aeronautics and Astronautics, Stanford University, Stanford.
29.
Gill
,
P.
,
Murray
,
W.
, and
Saunders
,
M.
,
2008
, “
User's Guide for SNOPT Version 7: Software for Large-Scale Nonlinear Programming
.”
30.
Blaha
,
C.
,
Hennecke
,
D.
,
Fritsch
,
G.
,
Höger
,
M.
, and
Beversdorff
,
M.
,
1997
Laser-2-Focus Measurements in a Transonic Compressor Blisk-Rotor and Comparison With 3D Numerical Simulations
,”
13th International Symposium Air Breathing Engines, ISABE
Paper No. 1997–706.
31.
Fritsch
,
G.
,
Höger
,
M.
,
Blaha
,
C.
, and
Bauer
,
D.
,
1998
, “
Viscous 3D Compressor Simulations on Parallel Architectures
,”
International Gas Turbine and Aeroengine Congress
, ASME Paper No. 98-GT-261.
32.
Höger
,
M.
,
Fritsch
,
G.
, and
Bauer
,
D.
,
1997
, “
Numerical Simulation of the Shock-Tip Leakage Vortex Interaction in a HPC Front Stage
,”
33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference
, AIAA Paper No. 1997–2876.
You do not currently have access to this content.