A new high-speed linear cascade has been developed for low-pressure turbine (LPT) studies at The Ohio State University. A compressible LPT profile is tested in the facility and its baseline performance at different operating conditions is assessed by means of isentropic Mach number distribution and wake total pressure losses. Active flow control is implemented through a spanwise row of vortex-generator jets (VGJs) located at 60% chord on the suction surface. The purpose of the study is to document the effectiveness of VGJ flow control in high-speed compressible flow. The effect on shock-induced separation is assessed by Mach number distribution, wake loss surveys and shadowgraph. Pressure sensitive paint (PSP) is applied to understand the three dimensional flow and shock pattern developing from the interaction of the skewed jets and the main flow. Data show that with increasing blowing ratio, the losses are first decreased due to separation reduction, but losses connected to compressibility effects become stronger due to increased passage shock strength and jet orifice choking; therefore, the optimum blowing ratio is a tradeoff between these counteracting effects. The effect of added surface roughness on the uncontrolled flow and on flow control behavior is also investigated. At lower Mach number, turbulent separation develops on the rough surface and a different flow control performance is observed. Steady VGJs appear to have control authority even on a turbulent separation but higher blowing ratios are required compared to incompressible flow experiments reported elsewhere. Overall, the results show a high sensitivity of steady VGJs control performance and optimum blowing ratio to compressibility and surface roughness.

References

1.
Coull
,
J. D.
,
Thomas
,
R. L.
, and
Hodson
,
H. P.
,
2010
, “
Velocity Distributions for Low Pressure Turbines
,”
ASME J. Turbomach.
,
132
(
4
), p.
041006
.10.1115/1.3192149
2.
Hansen
,
L.
, and
Bons
,
J. P.
,
2006
, “
Flow Measurements of Vortex Generator Jets in Separating Boundary Layer
,”
J. Propul. Power
,
22
(
3
), pp.
558
566
.10.2514/1.13820
3.
Khan
,
Z. U.
, and
Johnston
,
J. P.
,
2000
, “
On Vortex Generating Jets
,”
Int. J. Heat Fluid Flow
,
21
(
5
), pp.
506
511
.10.1016/S0142-727X(00)00038-2
4.
Sondergaard
,
R.
,
Rivir
,
R. B.
, and
Bons
,
J. P.
,
2002
, “
Control of Low-Pressure Turbine Separation Using Vortex-Generator Jets
,”
J. Propul. Power
,
18
(
4
), pp.
889
895
.10.2514/2.6014
5.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
,
2002
, “
The Fluid Dynamics of LPT Blade Separation Control Using Pulsed Jets
,”
ASME J. Turbomach.
,
124
(
1
), pp.
77
85
.10.1115/1.1425392
6.
Jouini
,
D. B. M.
,
Sjolander
,
S. A.
, and
Moustapha
,
S. H.
,
2002
, “
Midspan Flow-Field Measurements for Two Transonic Linear Turbine Cascades at Off-Design Conditions
,”
ASME J. Turbomach.
,
124
(
2
), pp.
176
186
.10.1115/1.1458576
7.
Vazquez
,
R.
, and
Torre
,
D.
,
2012
, “
The Effect of Mach Number on the Loss Generation of LP Turbines
,”
ASME
Paper No. GT2012-68555.10.1115/GT2012-68555
8.
Delery
,
J.
,
Marvin
,
J. G.
, and
Reshotko
,
E.
,
1986
,
Shock Wave Boundary Layer Interaction
,
AGARD
, Neuilly-Sur-Seine, France, Paper, No. AGARD-AG-280.
9.
Delery
,
J. M.
,
1985
, “
Shock Wave/Turbulent Boundary Layer Interaction and its Control
,”
Prog. Aerosp. Sci.
,
22
(
4
), pp.
209
280
.10.1016/0376-0421(85)90001-6
10.
Souverein
,
L. J.
, and
Debiève
,
J. F.
,
2010
, “
Effect of Air Jet Vortex Generators on a Shock Wave Boundary Layer Interaction
,”
Exp. Fluids
,
49
(
5
), pp.
1053
1064
.10.1007/s00348-010-0854-8
11.
Pearcey
,
H. H.
,
Rao
,
K.
, and
Sykes
,
D. M.
,
1993
, “
Inclined Air-Jets Used as Vortex Generators to Suppress Shock-Induced Separation
,” Computational and Experimental Assessment of Jets in Cross Flow, AGARD, Neuilly-Sur-Seine, France, AGARD-CP-534, Paper No. 40.
12.
Wallis
,
R. A.
, and
Stuart
,
C. M.
,
1962
, “
On the Control of Shock-Induced Boundary-Layer Separation With Discrete Air Jets
,” Aeronautical Research Council, London, Report No. ARC CP, 595.
13.
Szwaba
,
R.
,
2013
, “
Influence of Air-Jet Vortex Generator Diameter on Separation Region
,”
J. Therm. Science
,
22
(
4
), pp.
294
303
.10.1007/s11630-013-0627-9
14.
Gomes
,
R. A.
, and
Niehuis
,
R.
,
2012
, “
Aerothermodynamics of a High-Pressure Turbine Blade With Very High Loading and Vortex Generators
,”
ASME J. Turbomach.
,
134
(
1
), p.
011020
.10.1115/1.4003052
15.
Bons
,
J. P.
,
2010
, “
A Review of Surface Roughness Effects in Gas Turbines
,”
ASME J. Turbomach.
,
132
(
2
), p.
021004
.10.1115/1.3066315
16.
Vera
,
M.
,
Zhang
,
X. F.
,
Hodson
,
H.
, and
Harvey
,
N.
,
2007
, “
Separation and Transition Control on an Aft-Loaded Ultra-High-Lift LP Turbine Blade at Low Reynolds Numbers: High-Speed Validation
,”
ASME J. Turbomach.
,
129
(
2
), pp.
340
347
.10.1115/1.2437220
17.
Leipold
,
R.
,
Boese
,
M.
, and
Fottner
,
L.
,
2000
, “
The Influence of Technical Surface Roughness Caused by Precision Forging on the Flow Around a Highly Loaded Compressor Cascade
,”
ASME J. Turbomach.
,
122
(
3
), pp.
416
425
.10.1115/1.1302286
18.
Boyle
,
R. J.
, and
Senyitko
,
R. G.
,
2003
, “
Measurements and Predictions of Surface Roughness Effects on Turbine Vane Aerodynamics
,”
ASME
Paper No. GT2003-38580.10.1115/GT2003-38580
19.
Suder
,
K. L.
,
Chima
,
R. V.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
,
1995
, “
The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
117
(
4
), pp.
491
505
.10.1115/1.2836561
20.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
,
Chiang
,
H. D.
, and
Elovic
,
E.
,
1985
, “
Effect of Surface Roughness on Film Cooling Performance
,”
ASME J. Eng. Gas Turbines Power
,
107
(
1
), pp.
111
116
.10.1115/1.3239669
21.
Korakianitis
,
T.
,
1993
, “
Hierarchical Development of Three Direct-Design Methods for Two-Dimensional Axial-Turbomachinery Cascades
,”
ASME J. Turbomach.
,
115
(
2
), pp.
314
324
.10.1115/1.2929237
22.
Coull
,
J. D.
, and
Hodson
,
H. P.
,
2013
, “
Blade Loading and Its Application in the Mean-Line Design of Low Pressure Turbines
,”
ASME J. Turbomach.
,
135
(
2
), p.
021032
.10.1115/1.4006588
23.
Bernardini
,
C.
,
Carnevale
,
M.
,
Manna
,
M.
,
Martelli
,
F.
,
Simoni
,
D.
, and
Zunino
,
P.
,
2012
, “
Turbine Blade Boundary Layer Separation Suppression Via Synthetic Jet: an Experimental and Numerical Study
,”
J. Therm. Sci.
,
21
(
5
), pp.
404
412
.10.1007/s11630-012-0561-2
24.
Bons
,
J. P.
,
Pluim
,
J.
,
Gompertz
,
K.
,
Bloxham
,
M.
, and
Clark
,
J. P.
,
2012
, “
The Application of Flow Control to an Aft-Loaded Low Pressure Turbine Cascade With Unsteady Wakes
,”
ASME J. Turbomach.
,
134
(
3
), p.
031009
.10.1115/1.4000488
25.
Juliano
,
T. J.
,
Kumar
,
P.
,
Peng
,
D.
,
Gregory
,
J. W.
,
Crafton
,
J.
, and
Fonov
,
S.
,
2011
, “
Single-Shot, Lifetime-Based Pressure-Sensitive Paint for Rotating Blades
,”
Meas. Sci. Technol.
,
22
(
8
), p.
085403
.10.1088/0957-0233/22/8/085403
26.
Schreiber
,
H. A.
, and
Starken
,
H.
, “
An Investigation of a Strong Shock-Wave Turbulent Boundary Layer Interaction in a Supersonic Compressor Cascade
,”
ASME J. Turbomach.
,
114
(
3
), pp.
494
503
.10.1115/1.2929170
27.
Kalkhoran
, I
. M.
, and
Smart
,
M. K.
,
2000
, “
Aspects of Shock Wave-Induced Vortex Breakdown
,”
Progr. Aerosp. Sci.
,
36
(
1
), pp.
63
95
.10.1016/S0376-0421(99)00011-1
28.
Hummel
,
F.
,
Lotzerich
,
M.
,
Cardamone
,
P.
, and
Fottner
,
L.
,
2005
, “
Surface Roughness Effects on Turbine Blade Aerodynamics
,”
ASME J. Turbomach.
,
127
(
3
), pp.
453
461
.10.1115/1.1860377
29.
Peng
,
D.
,
Jensen
,
C. D.
,
Juliano
,
T. J.
,
Gregory
,
J. W.
,
Crafton
,
J. W.
,
Palluconi
,
S.
, and
Liu
,
T.
,
2013
, “
Temperature-Compensated Fast Pressure-Sensitive Paint
,”
AIAA J.
,
51
(
10
), pp.
2420
2431
.10.2514/1.J052318
You do not currently have access to this content.