The demand for increased performance and lower weight of gas turbines gives rise to higher fuel-to-air ratios and a more compact design of the combustion chamber, thereby increasing the potential of fuel escaping unburnt from the combustor. Chemical reactions are likely to occur when the coolant air, used to protect the turbine blades, interacts with the unreacted fuel. Within this work, Reynolds-averaged Navier–Stokes (RANS) simulations of reacting cooling films exposed to high temperature fuel-rich exhaust gases are performed using the commercial computational fluid dynamics (CFD) code ansys fluent and validated against experimental results obtained at the Air Force Research Laboratory in Ohio. The results underline that the choice of the turbulence model has a significant impact on the evolution of the flow field and the mixing effectiveness. The flamelet as well as the equilibrium combustion model is able to predict an adequate distance of the reaction zone normal to the wall. Its thickness, however, is still much smaller and its onset too far upstream as compared to the experimental results. According to the present analysis, the flamelet combustion model applied along with k–ω shear stress transport (SST) or k–ε turbulence model turned out to be an appropriate choice in order to model near wall reacting flows with reasonable prospect of success.
Skip Nav Destination
Article navigation
August 2015
Research-Article
Heat Transfer in Reacting Cooling Films: Influence and Validation of Combustion Modeling in Numerical Simulations
Stephanie Pohl,
Stephanie Pohl
1
Institut für Thermodynamik,
Fakultät für Luft- und Raumfahrttechnik,
e-mail: stephanie.pohl@unibw.de
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München
,Werner-Heisenberg-Weg 39
,Neubiberg 85577
, Germany
e-mail: stephanie.pohl@unibw.de
1Corresponding author.
Search for other works by this author on:
Gabriele Frank,
Gabriele Frank
Institut für Thermodynamik,
Fakultät für Luft- und Raumfahrttechnik,
e-mail: gabriele.frank@unibw.de
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München
,Werner-Heisenberg-Weg 39
,Neubiberg 85577
, Germany
e-mail: gabriele.frank@unibw.de
Search for other works by this author on:
Michael Pfitzner
Michael Pfitzner
Institut für Thermodynamik,
Fakultät für Luft- und Raumfahrttechnik,
e-mail: michael.pfitzner@unibw.de
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München
,Werner-Heisenberg-Weg 39
,Neubiberg 85577
, Germany
e-mail: michael.pfitzner@unibw.de
Search for other works by this author on:
Stephanie Pohl
Institut für Thermodynamik,
Fakultät für Luft- und Raumfahrttechnik,
e-mail: stephanie.pohl@unibw.de
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München
,Werner-Heisenberg-Weg 39
,Neubiberg 85577
, Germany
e-mail: stephanie.pohl@unibw.de
Gabriele Frank
Institut für Thermodynamik,
Fakultät für Luft- und Raumfahrttechnik,
e-mail: gabriele.frank@unibw.de
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München
,Werner-Heisenberg-Weg 39
,Neubiberg 85577
, Germany
e-mail: gabriele.frank@unibw.de
Michael Pfitzner
Institut für Thermodynamik,
Fakultät für Luft- und Raumfahrttechnik,
e-mail: michael.pfitzner@unibw.de
Fakultät für Luft- und Raumfahrttechnik,
Universität der Bundeswehr München
,Werner-Heisenberg-Weg 39
,Neubiberg 85577
, Germany
e-mail: michael.pfitzner@unibw.de
1Corresponding author.
Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received November 2, 2014; final manuscript received November 18, 2014; published online January 28, 2015. Editor: Kenneth C. Hall.
J. Turbomach. Aug 2015, 137(8): 081003 (10 pages)
Published Online: August 1, 2015
Article history
Received:
November 2, 2014
Revision Received:
November 18, 2014
Online:
January 28, 2015
Citation
Pohl, S., Frank, G., and Pfitzner, M. (August 1, 2015). "Heat Transfer in Reacting Cooling Films: Influence and Validation of Combustion Modeling in Numerical Simulations." ASME. J. Turbomach. August 2015; 137(8): 081003. https://doi.org/10.1115/1.4029350
Download citation file:
Get Email Alerts
Cited By
Related Articles
Unsteady Computational Fluid Dynamics Investigation of Effusion Cooling Process in a Lean Burn Aero-Engine Combustor
J. Eng. Gas Turbines Power (January,2017)
Application of Unsteady Computational Fluid Dynamics Methods to Trailing Edge Cutback Film Cooling
J. Turbomach (December,2014)
Effects of a Reacting Cross-Stream on Turbine Film Cooling
J. Eng. Gas Turbines Power (May,2010)
Damkohler Number Analysis in Lean Blow-Out of Toroidal Jet Stirred Reactor
J. Eng. Gas Turbines Power (October,2018)
Related Proceedings Papers
Related Chapters
Laminar Fluid Flow and Heat Transfer
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine
Introduction
Consensus on Operating Practices for Control of Water and Steam Chemistry in Combined Cycle and Cogeneration
Natural Gas Transmission
Pipeline Design & Construction: A Practical Approach, Third Edition