The demand for increased performance and lower weight of gas turbines gives rise to higher fuel-to-air ratios and a more compact design of the combustion chamber, thereby increasing the potential of fuel escaping unburnt from the combustor. Chemical reactions are likely to occur when the coolant air, used to protect the turbine blades, interacts with the unreacted fuel. Within this work, Reynolds-averaged Navier–Stokes (RANS) simulations of reacting cooling films exposed to high temperature fuel-rich exhaust gases are performed using the commercial computational fluid dynamics (CFD) code ansys fluent and validated against experimental results obtained at the Air Force Research Laboratory in Ohio. The results underline that the choice of the turbulence model has a significant impact on the evolution of the flow field and the mixing effectiveness. The flamelet as well as the equilibrium combustion model is able to predict an adequate distance of the reaction zone normal to the wall. Its thickness, however, is still much smaller and its onset too far upstream as compared to the experimental results. According to the present analysis, the flamelet combustion model applied along with k–ω shear stress transport (SST) or k–ε turbulence model turned out to be an appropriate choice in order to model near wall reacting flows with reasonable prospect of success.

References

1.
Lukachko
,
S.
,
Kirk
,
D.
, and
Waitz
,
I.
,
2002
, “
Gas Turbine Engine Durability Impacts of High Fuel-Air Combustors: Part 1—Potential for Secondary Combustion of Partially Reacted Fuel
,”
ASME
Paper No. GT2002-30077.10.1115/GT2002-30077
2.
Kirk
,
D.
,
Guenette
,
G.
,
Lukachko
,
S.
, and
Waitz
,
I.
,
2002
, “
Gas Turbine Engine Durability Impacts of High Fuel-Air Combustors: Part 2—Near Wall Reaction Effects on Film-Cooled Heat Transfer
,”
ASME
Paper No. GT2002-30182. 10.1115/GT2002-30182
3.
Milanes
,
D.
,
Kirk
,
D.
,
Fidkowski
,
K.
, and
Waitz
,
I.
,
2004
, “
Gas Turbine Durability Impacts of High Fuel-Air Ratio Combustors: Near Wall Reaction Effects on Film-Cooled Backward-Facing Step Heat Transfer
,”
ASME
Paper No. GT2004-53259. 10.1115/GT2004-53259
4.
Anderson
,
W.
,
Polanka
,
M.
,
Zelina
,
J.
,
Evans
,
D.
,
Stouffer
,
S.
, and
Justinger
,
G.
,
2009
, “
Effects of a Reacting Cross-Stream on Turbine Film Cooling
,”
ASME
Paper No. GT2009-59242. 10.1115/GT2009-59242
5.
Polanka
,
M.
,
Zelina
,
J.
,
Anderson
,
W.
,
Sekar
,
B.
,
Evans
,
D.
,
King
,
P.
,
Thornburg
,
H.
,
Lin
,
C.
, and
Stouffer
,
S.
,
2011
, “
Heat Release in Turbine Film Cooling I: Experimental and Computational Comparison of Three Geometries
,”
J. Propul. Power
,
27
(
2
), pp.
257
268
.10.2514/1.45317
6.
Lin
,
C.
,
Holder
,
R.
,
Polanka
,
M.
,
Zelina
,
J.
,
Sekar
,
B.
,
Thornburg
,
H.
, and
Briones
,
A.
,
2011
, “
Heat Release in Turbine Film Cooling II: Numerical Details of Secondary Combustion Surrounding Shaped Holes
,”
J. Propul. Power
,
27
(
2
), pp.
269
281
.10.2514/1.45318
7.
Bohan
,
B.
,
Blunck
,
D.
,
Polanka
,
M.
,
Kostka
,
S.
,
Jiang
,
N.
,
Roy
,
S.
, and
Stouffer
,
S.
,
2012
, “
Impact of an Upstream Film-Cooling Row on Mitigation of Secondary Combustion in a High Fuel-Air Environment
,”
ASME
Paper No. GT2012-68310. 10.1115/GT2012-68310
8.
Zelina
,
J.
,
Greenwood
,
R.
, and
Shouse
,
D.
,
2006
, “
Operability and Efficiency Performance of Ultra-Compact, High Gravity (g) Combustor Concepts
,”
ASME
Paper No. GT2006-90119. 10.1115/GT2006-90119
9.
Harrison
,
K.
, and
Bogard
,
D.
,
2008
, “
Comparison of RANS Turbulence Models for Prediction of Film Cooling Performance
,”
ASME
Paper No. GT2008-51423. 10.1115/GT2008-51423
10.
Walters
,
D.
, and
Leylek
,
J.
,
2000
, “
A Detailed Analysis of Film-Cooling Physics: Part I—Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
102
112
.10.1115/1.555433
11.
DeLallo
,
M.
,
Polanka
,
M.
, and
Blunck
,
D.
,
2012
, “
Impact of Trench and Ramp Film Cooling Designs to Reduce Heat Release Effects in a Reacting Flow
,”
ASME
Paper No. GT2012-68311. 10.1115/GT2012-68311
12.
Evans
,
D.
,
2008
, “
The Impact of Heat Release in Turbine Film Cooling
,” MS thesis, Air Force Institute of Technology, WPAFB, OH, Paper No. AFIT/GAE/ENY08-J02.
13.
Chan
,
W.
,
Kolla
,
H.
,
Ihme
,
M.
, and
Chen
,
J.
,
2012
, “
Analysis of a Jet in Cross Flow Using an Unsteady Flamelet Model
,” Spring Technical Meeting of the Central States Section of the Combustion Institute, Dayton, OH, Apr. 22–24, pp.
1156
1167
.
14.
Wang
,
L.
,
Pitsch
,
H.
,
Yamamoto
,
K.
, and
Orii
,
A.
,
2011
, “
An Efficient Approach of Unsteady Flamelet Modeling of a Cross-Flow-Jet Combustion System Using LES
,”
Combust. Theory Model.
,
15
(
6
), pp.
849
862
.10.1080/13647830.2011.577238
15.
Grout
,
R.
,
Gruber
,
A.
,
Yoo
,
C.
, and
Chen
,
J.
,
2011
, “
Direct Numerical Simulation of Flame Stabilization Downstream of a Transverse Fuel Jet in Cross-Flow
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1629
1637
.10.1016/j.proci.2010.06.013
16.
Kolla
,
H.
,
Grout
,
R.
,
Gruber
,
A.
, and
Chen
,
J.
,
2011
, “
Effect of Injection Angle on Stabilization of a Reacting Turbulent Hydrogen Jet in Cross-Flow
,”
7th U.S. National Technical Meeting of the Combustion Institute
, Atlanta, GA, Mar. 20–23.
17.
Frank
,
G.
,
Ferraro
,
F.
, and
Pfitzner
,
M.
,
2013
, “
RANS Simulations of Chemical Reactions in Cooling Films
,”
5th European Conference for Aeronautics and Space Sciences (EUCASS)
, Munich, July 1–5.
18.
Rotexo,
2012
, cosilab, Rotexo GmbH & Co. KG, Bochum, Germany.
19.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner, Jr.
,
W. C.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
,
2012
, GRI Mech 3.0, Gas Research Institute, Chicago, IL, http://combustion.berkeley.edu/gri-mech/version30/text30.html
20.
ANSYS, 2011, ANSYS Fluent, Release 14.0, Theory Guide, ANSYS Inc., Canonsburg, PA.
21.
Peters
,
N.
,
1984
, “
Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion
,”
Prog. Energy Combust. Sci.
,
10
(
3
), pp.
319
339
.10.1016/0360-1285(84)90114-X
22.
Frank
,
G.
,
Pohl
,
S.
, and
Pfitzner
,
M.
,
2014
, “
Heat Transfer in Reacting Cooling Films, Part II: Modelling Near-Wall Effects in Non-Premixed Combustion With OpenFOAM
,”
ASME
Paper No. GT2014-25215. 10.1115/GT2014-25215
23.
Fiala
,
T.
, and
Sattelmayer
,
T.
,
2013
, “
A Posteriori Computation of OH* Radiation From Numerical Simulations in Rocket Combustion Chambers
,”
5th European Conference for Aeronautics and Space Sciences (EUCASS)
, Munich, July 1–5.
24.
Kathrotia
,
T.
,
Fikri
,
M.
,
Bozkurt
,
M.
,
Hartmann
,
M.
,
Riedel
,
U.
, and
Schulz
,
C.
,
2010
, “
Study of the H + O + M Reaction Forming OH*: Kinetics of OH* Chemiluminescence in Hydrogen Combustion Systems
,”
Combust. Flame
,
157
(
7
), pp.
1261
1273
.10.1016/j.combustflame.2010.04.003
25.
O’ Conaire
,
M.
,
Curran
,
H.
,
Simmie
,
J.
,
Pitz
,
W.
, and
Westbrook
,
C.
,
2004
, “
A Comprehensive Modeling Study of Hydrogen Oxidation
,”
Int. J. Chem. Kinet.
,
36
(
11
), pp.
603
622
.10.1002/kin.20036
26.
Burcat
,
A.
, and
Ruscic
,
B.
,
2005
, “
Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Updates from Active Thermochemical Tables
,” joint report, Argonne National Laboratory, Argonne, IL, Report No. ANL-05/20, and Technion-Israel Institute of Technology, Haifa, Report No. TAE 960.
You do not currently have access to this content.