A study examining the internal cooling of turbine blades by swirling flow is presented. The sensitivity of swirling flow is investigated with regard to Reynolds number, swirl intensity, and the common geometric features of blade-cooling ducts. The flow system consists of a straight and round channel that is attached to a swirl generator with tangential inlets. Different orifices and 180-deg bends are employed as channel outlets. The experiments were carried out with magnetic resonance velocimetry (MRV) for which water was used as flow medium. As the main outcome, it was found that the investigated flows are highly sensitive to the conditions at the channel outlet. However, it was also discovered that for some outlet geometries the flow field remains the same. The associated flow features a favorable topology for heat transfer; the majority of mass is transported in the annular region close to the channel walls. Together with its high robustness, it is regarded as an applicable flow type for the internal cooling of turbine blades. A large eddy simulation (LES) was conducted to analyze the heat transfer characteristic of the associated flow for S0=3 and Re=20,000. The simulation showed an averaged Nusselt number increase of factor 4.7 compared to fully developed flow. However, a pressure loss increase of factor 43 must be considered as well.

References

1.
Glezer
,
B.
,
Moon
,
H. K.
, and
O'Connell
,
T.
,
1996
, “
A Novel Technique for the Internal Blade Cooling
,”
ASME
Paper No. 96-GT-18.
2.
Ligrani
,
P. M.
,
Hedlund
,
C. R.
,
Babinchak
,
B. T.
,
Thambu
,
R.
,
Moon
,
H.-K.
, and
Glezer
,
B.
,
1998
, “
Flow Phenomena in Swirl Chambers
,”
Exp. Fluids
,
24
(
3
), pp.
254
264
.
3.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
,
2003
, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
,
41
(
3
), pp.
337
362
.
4.
Glezer
,
B.
,
Moon
,
H. K.
,
Kerrebrock
,
J.
,
Bons
,
J.
, and
Guenette
,
G.
,
1998
, “
Heat Transfer in a Rotating Radial Channel With Swirling Internal Flow
,”
ASME
Paper No. 98-GT-214.
5.
Winter
,
N.
,
Kegalj
,
M.
, and
Schiffer
,
H.-P.
,
2009
, “
Effect of Rotation to the Cyclone Cooling Method: Mass Transfer Measurements
,”
International Symposium on Heat Transfer in Gas Turbine Systems
, Antalya, Turkey, Aug. 9–14.
6.
Hay
,
N.
, and
West
,
P. D.
,
1975
, “
Heat Transfer in Free Swirling Flow in a Pipe
,”
ASME J. Heat Transfer
,
97
(
3
), pp.
411
416
.
7.
Dhir
,
V. K.
, and
Chang
,
F.
,
1992
, “
Heat Transfer Enhancement Using Tangential Injection
,”
ASHRAE Trans.
,
98
, pp.
383
390
.
8.
Chang
,
F.
, and
Dhir
,
V. K.
,
1995
, “
Mechanisms of Heat Transfer Enhancement and Slow Decay of Swirl in Tubes Using Tangential Injection
,”
Int. J. Heat Fluid Flow
,
16
(
2
), pp.
78
87
.
9.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus Press
,
Tunbridge Wells, UK
.
10.
Escudier
,
M. P.
, and
Keller
,
J. J.
,
1985
, “
Recirculation in Swirling Flow: A Manifestation of Vortex Breakdown
,”
AIAA J.
,
23
(
1
), pp.
111
116
.
11.
Sugawara
,
S.
,
Sato
,
T.
,
Komatsu
,
H.
, and
Osaka
,
H.
,
1988
, “
Effect of Free Stream Turbulence on Flat Plate Heat Transfer
,”
ASME Int. J. Heat Transfer
,
31
(
5
), pp.
5
12
.
12.
Chang
,
F.
, and
Dhir
,
V. K.
,
1994
, “
Turbulent Flow Field in Tangentially Injected Swirl Flows in Tubes
,”
Int. J. Heat Fluid Flow
,
15
(
5
), pp.
346
356
.
13.
Algifri
,
A.
,
Bhardwaj
,
R.
, and
Rao
,
Y.
,
1988
, “
Turbulence Measurements in Decaying Swirl Flow in a Pipe
,”
Appl. Sci. Res.
,
45
(
3
), pp.
233
250
.
14.
Rayleigh
,
L.
,
1916
, “
On the Dynamics of Revolving Fluids
,”
Proc. R. Soc. London
,
A93
, pp.
48
154
.
15.
Goertler
,
H.
,
1954
, “
On the Three-Dimensional Instability of Laminar Boundary Layers on Concave Walls
,” Report No. NACA TM 1375.
16.
Patel
,
V. C.
, and
Sotiropoulos
,
F.
,
1997
, “
Longitudinal Curvature Effects in Turbulent Boundary Layers
,”
Prog. Aerosp. Sci.
,
33
, pp.
1
70
.
17.
Hedlund
,
C. R.
,
Ligrani
,
P. M.
,
Moon
,
H.-K.
, and
Glezer
,
B.
,
1999
, “
Heat Transfer and Flow Phenomena in a Swirl Chamber Simulating Turbine Blade Internal Cooling
,”
ASME J. Turbomach.
,
121
(
4
), pp.
804
813
.
18.
Hedlund
,
C. R.
, and
Ligrani
,
P. M.
,
2000
, “
Local Swirl Chamber Heat Transfer and Flow Structure at Different Reynolds Numbers
,”
ASME J. Turbomach.
,
122
(
2
), pp.
375
385
.
19.
Alekseenko
,
S. V.
,
Kuibin
,
P. A.
,
Okulov
,
V. L.
, and
Shtork
,
S. I.
,
1999
, “
Helical Vortices in Swirl Flow
,”
J. Fluid Mech.
,
382
, pp.
195
243
.
20.
King
,
M. K.
,
Rothfus
,
R. R.
, and
Kermode
,
R. I.
,
1969
, “
Static Pressure and Velocity Profiles in Swirling Incompressible Tube Flow
,”
AIChE J.
,
15
(
6
), pp.
837
842
.
21.
Squire
,
H. B.
,
1962
,
Analysis of the Vortex Breakdown Phenomenon
,
Miszellanen der Angewandten Mechanik, Akademie Verlag
,
Berlin
.
22.
Sarpkaya
,
T.
,
1971
, “
On Stationary and Travelling Vortex Breakdowns
,”
J. Fluid Mech.
,
45
(
3
), pp.
545
559
.
23.
Steenbergen
,
W.
, and
Voskamp
,
J.
,
1998
, “
The Rate of Decay of Swirl in Turbulent Pipe Flow
,”
Flow Meas. Instrum.
,
9
(
2
), pp.
67
78
.
24.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech. Fluid
,
285
, pp.
69
94
.
25.
Han
,
J.-C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2012
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed.,
Taylor & Francis
,
New York
.
26.
Fukushima
,
E.
,
1999
, “
Nuclear Magnetic Resonance as a Tool to Study Flow
,”
Annu. Rev. Fluid Mech.
,
31
(
1
), pp.
95
123
.
27.
Elkins
,
C. J.
, and
Alley
,
M. T.
,
2007
, “
Magnetic Resonance Velocimetry: Applications of Magnetic Resonance Imaging in the Measurement of Fluid Motion
,”
Exp. Fluids
,
43
(
6
), pp.
823
858
.
28.
Escudier
,
M. P.
,
Nickson
,
A. K.
, and
Poole
,
R. J.
,
2006
, “
Influence of Outlet Geometry on Strongly Swirling Turbulent Flow Through a Circular Tube
,”
Phys. Fluids
,
18
(
12
), p.
125103
.
29.
Grundmann
,
S.
,
Wassermann
,
F.
,
Lorenz
,
R.
,
Jung
,
B.
, and
Tropea
,
C.
,
2012
, “
Experimental Investigation of Helical Structures in Swirling Flows
,”
Int. J. Heat Fluid Flow
,
37
, pp.
51
63
.
30.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
31.
Mathey
,
F.
,
Cokljat
,
D.
,
Bertoglio
,
J. P.
, and
Sergent
,
E.
,
2003
, “
Specification of LES Inlet Boundary Condition Using Vortex Method
,”
4th International Symposium on Turbulence, Heat and Mass Transfer
, Antalya, Turkey, Oct. 12–17.
32.
Courant
,
R.
,
Friedrichs
,
K.
, and
Lewy
,
H.
,
1967
, “
On the Partial Difference Equations of Mathematical Physics
,”
IBM J. Res. Dev.
,
11
(
2
), pp.
215
234
.
33.
Dittus
,
P. W.
, and
Boelter
,
L. M. K.
,
1985
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,”
Univ. Calif. Pub. Eng.
,
2
, pp.
443
461
(Reprinted in 1985, Int. Commun. Heat Mass Transfer, 12, pp. 3–22).
34.
Prandtl
,
L.
,
1935
, “
The Mechanics of Viscous Fluids
,”
Aerodynamics Theory
, Vol. III, W. F. Durand, ed.,
Springer Verlag
,
Berlin
, pp.
34
208
.
You do not currently have access to this content.