Shaped film cooling holes have become a standard geometry for protecting gas turbine components. Few studies, however, have reported flowfield measurements for moderately expanded shaped holes and even fewer have reported on the effects of high freestream turbulence intensity relevant to gas turbine airfoils. This study presents detailed flowfield and adiabatic effectiveness measurements for a shaped hole at freestream turbulence intensities of 0.5% and 13%. Test conditions included blowing ratios of 1.5 and 3 at a density ratio of 1.5. Measured flowfields revealed a counter-rotating vortex pair (CRVP) and high jet penetration into the mainstream at the blowing ratio of 3. Elevated freestream turbulence had a minimal effect on mean velocities and rather acted by increasing turbulence intensity around the coolant jet, resulting in increased lateral spreading of coolant.

References

1.
Kohli
,
A.
, and
Bogard
,
D. G.
,
1998
, “
Effects of Very High Freestream Turbulence on the Jet-Mainstream Interaction in a Film Cooling Flow
,”
ASME J. Turbomach.
,
120
(
3
), pp.
785
790
.
2.
Bons
,
J. P.
,
MacArthur
,
C. D.
, and
Rivir
,
R. B.
,
1996
, “
The Effect of High Free-Stream Turbulence on Film Cooling Effectiveness
,”
ASME J. Turbomach.
,
118
(
4
), pp.
814
825
.
3.
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Effects of Free-Stream Turbulence and Surface Roughness on Film Cooling
,”
ASME
Paper No. 96-GT-462.
4.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
A.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
.
5.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Free-Stream Effects on the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
(
6
), p.
061007
.
6.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
,
1997
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
ASME
Paper No. 97-GT-45.
7.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flowfield Measurements for Film Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
2
), pp.
327
336
.
8.
Laveau
,
B.
, and
Abhari
,
R. S.
,
2010
, “
Influence of Flow Structure on Shaped Hole Film Cooling Performance
,”
ASME
Paper No. GT2010-23032.
9.
Jessen
,
W.
,
Konopka
,
M.
, and
Schroeder
,
W.
,
2012
, “
Particle-Image Velocimetry Measurements of Film Cooling in an Adverse Pressure Gradient Flow
,”
ASME J. Turbomach.
,
134
(
2
), p.
021025
.
10.
Fawcett
,
R. J.
,
Wheeler
,
A. P. S.
,
He
,
L.
, and
Taylor
,
R.
,
2012
, “
Experimental Investigation Into Unsteady Effects on Film Cooling
,”
ASME J. Turbomach.
,
134
(
2
), p.
021015
.
11.
Wright
,
L. M.
,
McClain
,
S. T.
,
Brown
,
C. P.
, and
Harmon
,
W. V.
,
2013
, “
Assessment of a Double Hole Film Cooling Geometry Using S-PIV and PSP
,”
ASME
Paper No. GT2013-94614.
12.
auf dem Kampe
,
T.
,
Voülker
,
S.
,
Saümel
,
T.
,
Heneka
,
C.
,
Ladisch
,
H.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2013
, “
Experimental and Numerical Investigation of Flow Field and Downstream Surface Temperatures of Cylindrical and Diffuser Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
135
(
1
), p.
011026
.
13.
Eberly
,
M. K.
, and
Thole
,
K. A.
,
2014
, “
Time-Resolved Film Cooling Flows at High and Low Density Ratios
,”
ASME J. Turbomach.
,
136
(
6
), p.
061003
.
14.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME
Paper No. GT2014-25992.
15.
Raffel
,
M.
,
Willert
,
C. E.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry: A Practical Guide
, 2nd ed.,
Springer
,
Berlin
.
16.
LaVision
,
2014
, “
Product Manual for DaVis 8.2.1.48998: FlowMaster
,”
LaVision GmbH
, Göttingen, Germany, Item No. 1105011-4.
17.
Eberly
,
M. K.
,
2012
, “
Time-Resolved Studies of High Density Ratio Film-Cooling Flows
,” M.S. thesis, The Pennsylvania State University, University Park, PA.
18.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2006
,
Theory and Design for Mechanical Measurements
,
Wiley
,
Hoboken, NJ
.
19.
Wieneke
,
B.
,
2014
, “
Generic A-Posteriori Uncertainty Quantification for PIV Vector Fields by Correlation Statistics
,”
17th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, July 7–10, pp.
1
9
.
20.
Thole
,
K. A.
, and
Bogard
,
D. G.
,
1995
, “
Enhanced Heat Transfer and Shear Stress Due to High Free-Stream Turbulence
,”
ASME J. Turbomach.
,
117
(
3
), pp.
418
424
.
21.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1990
, “
Effects of Density Ratio on the Hydrodynamics of Film Cooling
,”
ASME J. Turbomach.
,
112
(
3
), pp.
437
443
.
22.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
1998
, “
Wall-Bounded Turbulent Flows
,”
CRC Handbook of Fluid Dynamics
, Section 13.5,
CRC Press
,
Boca Raton, FL
, pp.
13.49
13.63
.
You do not currently have access to this content.