An experimental study of film cooling is conducted on the tip of a turbine blade with a blade rotation speed of 1200 rpm. The coolant is injected from the blade tip and pressure side (PS) holes, and the effect of the blowing ratio on the heat transfer coefficient and film cooling effectiveness of the blade tip is investigated. The blade has a tip clearance of 1.7% of the blade span and consists of a cut back squealer rim, two cylindrical tip holes, and six shaped PS holes. The stator–rotor–stator test section is housed in a closed loop wind tunnel that allows for the performance of transient heat transfer tests. Measurements of the heat transfer coefficient and film cooling effectiveness are done on the blade tip using liquid crystal thermography. These measurements are reported for the no coolant case and for blowing ratios of 1.0, 1.5, 2.0, 3.0, and 4.0. The heat transfer result for the no coolant injection shows a region of high heat transfer on the blade tip near the blade leading edge region as the incident flow impinges on that region. This region of high heat transfer extends and stretches on the tip as more coolant is introduced through the tip holes at higher blowing ratios. The cooling results show that increasing the blowing ratio increases the film cooling effectiveness. The cooling effectiveness signatures indicate that the tip coolant is pushed toward the blade suction side thereby providing better coverage in that region. This shift in coolant flow toward the blade suction side, as opposed to the PS in stationary studies, can primarily be attributed to the effects of the blade relative motion.

References

1.
Rahman
,
M. H.
,
Kim
,
S. I.
, and
Hassan
,
I.
,
2013
, “
Tip Leakage Flow and Heat Transfer on Turbine Blade Tip and Casing—Part 1: Effect of Tip Clearance Height and Rotation Speed
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
14
(
4
), pp.
290
303
.
2.
Kwak
,
J. S.
,
Ahn
,
J.
, and
Han
,
J. C.
,
2004
, “
Effects of Rim Location, Rim Height and Tip Clearance on the Tip and Near-Tip Region of a Turbine Blade
,”
Int. J. Heat Mass Transfer
,
47
(
26
), pp.
5651
5663
.
3.
Azad
,
G. S.
,
Han
,
J. C.
,
Teng
,
S.
, and
Boyle
,
R. J.
,
2000
, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
,
122
(
4
), pp.
717
724
.
4.
Kwak
,
J. S.
, and
Han
,
J. C.
,
2003
, “
Heat Transfer Coefficients and Film Cooling Effectiveness on the Squealer Tip of a Gas Turbine Blade
,”
ASME J. Turbomach.
,
125
(
4
), pp.
648
657
.
5.
Christophel
,
J. R.
,
Thole
,
K. A.
, and
Cunha
,
F. J.
,
2005
, “
Cooling the Tip of a Turbine Blade Using Pressure Side Holes—Part I: Adiabatic Effectiveness Measurements
,”
ASME J. Turbomach.
,
127
(
2
), pp.
270
277
.
6.
Christophel
,
J. R.
,
Thole
,
K. A.
, and
Cunha
,
F. J.
,
2005
, “
Cooling the Tip of a Turbine Blade Using Pressure Side Holes—Part II: Heat Transfer Measurements
,”
ASME J. Turbomach.
,
127
(
2
), pp.
278
286
.
7.
Kim
,
Y. W.
, and
Metzger
,
D. E.
,
1995
, “
Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models
,”
ASME J. Turbomach.
,
117
(
1
), pp.
12
21
.
8.
Tallman
,
J.
, and
Lakshminarayana
,
B.
,
2001
, “
Numerical Simulation of Tip Leakage Flows in Axial Flow Turbines, With Emphasis on Flow Physics—Part II: Effect of Outer Casing Relative Motion
,”
ASME J. Turbomach.
,
123
(
2
), pp.
324
333
.
9.
Yaras
,
M. I.
,
Sjolander
,
S. A.
, and
Kind
,
R. J.
,
1992
, “
Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades—Part II: Downstream Flow Field and Blade Loading
,”
ASME J. Turbomach.
,
114
(
3
), pp.
660
667
.
10.
Acharya
,
S.
, and
Moreaux
,
L.
,
2013
, “
Numerical Study of the Flow Past a Turbine Blade Tip: Effect of Relative Motion Between Blade and Shroud
,”
ASME J. Turbomach.
,
136
(
3
), p.
031015
.
11.
Rezasoltani
,
M.
,
Lu
,
K.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2015
, “
A Combined Experimental and Numerical Study of the Turbine Blade Tip Film Cooling Effectiveness Under Rotation Condition
,”
ASME J. Turbomach.
,
137
(
5
), p.
051009
.
12.
Dunn
,
M. G.
, and
Haldeman
,
C. W.
,
2000
, “
Time-Averaged Heat Flux for a Recessed Tip, Lip, and Platform of a Transonic Turbine Blade
,”
ASME J. Turbomach.
,
122
(
4
), pp.
692
698
.
13.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Thomas
,
G. A.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2005
, “
Blade-Tip Heat Transfer in a Transonic Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
219
(
6
), pp.
421
430
.
14.
Molter
,
S. M.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
,
Bergholz
,
R. F.
, and
Vitt
,
P.
,
2006
, “
Heat-Flux Measurements and Predictions for the Blade Tip Region of a High-Pressure Turbine
,”
ASME
Paper No. GT2006-90048.
15.
Abhari
,
R.
, and
Epstein
,
A.
,
1994
, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
,
116
(
1
), pp.
63
70
.
16.
Tamunobere
,
O.
,
Drewes
,
C.
, and
Acharya
,
S.
,
2015
, “
Heat Transfer to an Actively Cooled Shroud With Blade Rotation
,”
ASME J. Thermal Sci. Eng. Appl.
,
7
(
4
), p.
041020
.
17.
Goldstein
,
R.
,
Eckert
,
E.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(
5
), pp.
595
607
.
18.
Ekkad
,
S.
, and
Han
,
J.-C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
957
968
.
19.
Ireland
,
P. T.
, and
Jones
,
T. V.
,
1987
, “
The Response Time of a Surface Thermometer Employing Encapsulated Thermochromic Liquid Crystals
,”
J. Phys. E
,
20
(
10
), pp.
1195
1199
.
20.
Klein
,
E. J.
,
1968
, “
Application of Liquid Crystals to Boundary Layer Flow Visualization
,”
AIAA
Paper No. 68-376.
21.
Smith
,
C. R.
,
Sabatino
,
D. R.
, and
Praisner
,
T. J.
,
2001
, “
Temperature Sensing With Thermochromic Liquid Crystals
,”
Exp. Fluids
,
30
(
2
), pp.
190
201
.
22.
Tamunobere
,
O.
, and
Acharya
,
S.
,
2015
, “
Shroud Cooling With Blade Rotation Using Discrete Holes and an Upstream Slot
,”
AIAA J. Thermophys. Heat Transfer
(epub).
23.
Vedula
,
R. J.
, and
Metzger
,
D. E.
,
1991
, “
A Method for the Simultaneous Determination of Local Effectiveness and Heat Transfer Distributions in Three-Temperature Convection Situations
,”
ASME
Paper No. 91-GT-345.
24.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Bosch
,
G.
,
1991
, “
Transient Liquid Crystal Measurement of Local Heat Transfer on a Rotating Disk With Jet Impingement
,”
ASME J. Turbomach.
,
113
(
1
), pp.
52
59
.
25.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(1), pp.
3
8
.
26.
Krishnababu
,
S. K.
,
Newton
,
P. J.
,
Dawes
,
W. N.
,
Lock
,
G. D.
,
Hodson
,
H. P.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part I: Effect of Tip Geometry and Tip Clearance Gap
,”
ASME J. Turbomach.
,
131
(
1
), pp.
1
14
.
27.
Ahn
,
J.
,
Mhetras
,
S.
, and
Han
,
J. C.
,
2005
, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure-Sensitive Paint
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
521
530
.
28.
Yang
,
D.
,
Yu
,
X.
, and
Feng
,
Z.
,
2010
, “
Investigation of Leakage Flow and Heat Transfer in a Gas Turbine Blade Tip With Emphasis on the Effect of Rotation
,”
ASME J. Turbomach.
,
132
(
4
), pp.
1
9
.
You do not currently have access to this content.