The design of modern gas turbines cooling systems cannot be separated from the use of computational fluid dynamics (CFD) and the accurate estimation of the effect of film cooling. Nevertheless, a complete modeling of film cooling holes within the computational domain requires an effort both from the point of view of the mesh creation and from computational time. It is here proposed a new way to model the film cooling (FCM), capable of representing the effect of the coolant at hole exit. This is possible due to the introduction of local source terms near the hole exit in a delimited portion of the domain, avoiding the meshing process of perforations. The goal is to provide a reliable and accurate tool to simulate film-cooled turbine blades and nozzles without having to explicitly mesh the holes. The model was subjected to an intensive validation campaign, composed of two phases. During the first one, FCM results are compared to experimental data and numerical results (obtained with complete cooling holes meshing) on a series of test cases reproducing flat plate cooling configurations for different coolant conditions (in terms of blowing and density ratio). In the second phase, a film-cooled vane test case has been studied, in order to consider a real injection system and flow conditions: FCM predictions are compared to an in-house developed correlative approach and full conjugate heat transfer (CHT) results. Finally, a comparison between FCM predictions and experimental data was performed on an actual nozzle of a GE Oil & Gas heavy-duty gas turbine, in order to prove the feasibility of the procedure. The presented film cooling model (FCM) proved to be a feasible and reliable tool, able to evaluate adiabatic effectiveness, simplifying the design phase avoiding the meshing process of perforations.

References

1.
Goormans-Francke
,
C.
,
Carabin
,
G.
, and
Hirsch
,
C.
,
2008
, “
Mesh Generation for Conjugate Heat Transfer Analysis of a Cooled High Pressure Turbine Stage
,”
ASME
Paper No. GT2008-50660.
2.
Andrei
,
L.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Winchler
,
L.
,
2014
, “
A Decoupled CHT Procedure: Application and Validation on a Gas Turbine Vane With Different Cooling Configurations
,”
Energy Proc.
,
45
(1), pp.
1087
1096
.
3.
Crawford
,
M. E.
,
Kays
,
W. M.
, and
Moffat
,
R. J.
,
1980
, “
Full Coverage Film-Cooling-Part II: Heat Transfer Data and Numerical Simulation
,”
ASME J. Eng. Power
,
102
(
4
), pp.
1006
1012
.
4.
Miller
,
K. L.
, and
Crawford
,
M. E.
,
1984
, “
Numerical Simulation of Single, Double, and Multiple Row Film Cooling Effectiveness and Heat Transfer
,”
ASME
Paper No. 84-GT-112.
5.
Heidmann
,
J. D.
, and
Hunter
,
S. D.
,
2001
, “
Coarse Grid Modeling of Turbine Film Cooling Flows Using Volumetric Source Terms
,”
ASME
Paper No. 2001-GT-0138.
6.
Burdet
,
A.
,
Abhari
,
R. S.
, and
Rose
,
M. G.
,
2006
, “
Modeling of Film Cooling—Part II: Model for Use in Three-Dimensional Computational Fluid Dynamics
,”
ASME J. Turbomach.
,
129
(
2
), pp.
221
231
.
7.
Tartinville
,
B.
, and
Hirsch
,
C.
,
2008
, “
Modelling of Film Cooling for Turbine Blade Design
,”
ASME
Paper No. GT2008-50316.
8.
auf dem Kampe
,
T.
, and
Völker
,
S.
,
2012
, “
A Model for Cylindrical Hole Film Cooling—Part II: Model Formulation, Implementation and Results
,”
ASME J. Turbomach
,
134
(
6
), p.
061011
.
9.
auf dem Kampe
,
T.
,
Völker
,
S.
, and
Zehe
,
F.
,
2012
, “
A Model for Cylindrical Hole Film Cooling—Part I: A Correlation for Jet-Flow With Application to Film Cooling
,”
ASME J. Turbomach
,
134
(
6
), p.
061010
.
10.
Andreini
,
A.
,
Da Soghe
,
R.
,
Facchini
,
F.
,
Mazzei
,
L.
,
Colantuoni
,
S.
, and
Turrini
,
F.
,
2014
, “
Local Source Based CFD Modeling of Effusion Cooling Holes: Validation and Application to an Actual Combustor Test Case
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011506
.
11.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
12.
ANSYS,
2011
, “ANSYS CFX-Solver Modeling Guide,” Canonsburg, PA.
13.
Andrei
,
L.
,
Andreini
,
A.
,
Bianchini
,
C.
,
Facchini
,
B.
, and
Mazzei
,
L.
,
2013
, “
Numerical Analysis of Effusion Plates for Combustor Liners Cooling With Varying Density Ratio
,”
ASME
Paper No. GT2013-95039.
14.
L'Ecuyer
,
M. R.
, and
Soechting
,
F. O.
,
1985
, “
A Model for Correlating Flat Plate Film-Cooling Effectiveness for Rows of Round Holes
,” AGARD CP-390 Heat Transfer and Cooling in Gas Turbines.
15.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach
,
113
(
3
), pp.
442
449
.
16.
Azzi
,
A.
, and
Jubran
,
B. A.
,
2003
, “
Numerical Modeling of Film Cooling From Short Length Stream-Wise Injection Holes
,”
Heat Mass Transfer
,
39
(
4
), pp.
345
353
.
17.
Lakehal
,
D.
,
Theodoris
,
G. S.
, and
Rodi
,
W.
,
1998
, “
Computation of Film Cooling of a Flat Plate by Lateral Injection From a Row of Holes
,”
Int. J. Heat Fluid Flow
,
19
(
5
), pp.
418
430
.
18.
Andrei
,
L.
,
Andreini
,
A.
,
Bianchini
,
C.
, and
Facchini
,
B.
,
2013
, “
Numerical Benchmark of Nonconventional RANS Turbulence Models for Film and Effusion Cooling
,”
ASME J. Turbomach
,
135
(
4
), p.
041026
.
19.
Andreini
,
A.
,
Facchini
,
B.
,
Picchi
,
A.
,
Tarchi
,
L.
, and
Turrini
,
F.
,
2013
, “
Experimental and Theoretical Investigation of Thermal Effectiveness in Multi-Perforated Plates for Combustor Liner Effusion Cooling
,”
ASME J. Turbomach.
,
136
(9), p. 091003.
20.
Hylton
,
L. D.
,
Nirmalan
,
N. V.
,
Sultanian
,
B. K.
, and
Kaufman
,
R. M.
,
1988
, “
The Effects of Leading Edge and Downstream Film Cooling on Turbine Vane Heat Transfer
,”
Report No. NASA-CR-182133
.http://ntrs.nasa.gov/search.jsp?R=19890004383
21.
Andreini
,
A.
,
Bonini
,
A.
,
Carcasci
,
C.
,
Facchini
,
B.
,
Innocenti
,
L.
, and
Ciani
,
A.
,
2012
, “
Conjugate Heat Transfer Calculations on GT Rotor Blade for Industrial Applications. Part I: Equivalent Internal Fluid Network Setup
,”
ASME
Paper No. GT2012-69846.
22.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Correlation of Film-Cooling Effectiveness From Thermographic Measurements at Enginelike Conditions
,”
ASME J. Turbomach.
,
124
(
4
), pp.
686
698
.
23.
Seller
,
J. P.
,
1963
, “
Gaseous Film Cooling With Multiple Injection Stations
,”
AIAA J.
,
1
(
9
), pp.
2154
2156
.
24.
Andrei
,
L.
,
Facchini
,
B.
,
Caciolli
,
G.
,
Picchi
,
A.
,
Tarchi
,
L.
,
D'Ercole
,
M.
,
Innocenti
,
L.
, and
Russo
,
A.
,
2014
, “
Performance Improvement of a Heavy Duty GT: Adiabatic Effectiveness Measurements on First Stage Vanes in Representative Engine Conditions
,”
ASME
Paper No. GT2014-26894.
You do not currently have access to this content.