The major techniques for measuring jet noise have significant drawbacks, especially when including engine installation effects such as jet–flap interaction noise. Numerical methods including low order correlations and Reynolds-averaged Navier–Stokes (RANS) are known to be deficient for complex configurations and even simple jet flows. Using high fidelity numerical methods such as large eddy simulation (LES) allows conditions to be carefully controlled and quantified. LES methods are more practical and affordable than experimental campaigns. The potential to use LES methods to predict noise, identify noise risks, and thus modify designs before an engine or aircraft is built is a possibility in the near future. This is particularly true for applications at lower Reynolds numbers such as jet noise of business jets and jet-flap interaction noise for under-wing engine installations. Hence, we introduce our current approaches to predicting jet noise reliably and contrast the cost of RANS–numerical-LES (RANS–NLES) with traditional methods. Our own predictions and existing literature are used to provide a current guide, encompassing numerical aspects, meshing, and acoustics processing. Other approaches are also briefly considered. We also tackle the crucial issues of how codes can be validated and verified for acoustics and how LES-based methods can be introduced into industry. We consider that hybrid RANS–(N)LES is now of use to industry and contrast costs, indicating the clear advantages of eddy resolving methods.

References

1.
ACARE
,
2001
, “
European Aeronautics: A Vision for 2020
,”
Advisory Council for Aviation Research and Innovation in Europe
, European Commission, Luxembourg.
2.
Bodony
,
D. J.
, and
Lele
,
S. K.
,
2008
, “
Current Status of Jet Noise Predictions Using Large-Eddy Simulation
,”
AIAA J.
,
46
(
2
), pp.
364
380
.
3.
Bailly
,
C.
, and
Juve
,
D.
,
2000
, “
Numerical Solution of Acoustic Propagation Problem Using Linearised Euler Equations
,”
AIAA J.
,
38
(
1
), pp.
22
29
.
4.
Bogey
,
C.
, and
Bailly
,
C.
,
2010
, “
Influence of Nozzle-Exit Boundary-Layer Conditions on the Flow and Acoustic Fields on Initially Laminar Jets
,”
J. Fluid Mech.
,
663
, pp.
507
538
.
5.
Ffowcs Williams
,
J. E.
, and
Hawkings
,
D. L.
,
1969
, “
Sound Generation by Turbulence and Surfaces in Arbitrary Motion
,”
Philos. Trans. R. Soc. A
,
264
(
1151
), pp.
321
342
.
6.
Pérez Arroyo
,
C.
,
Daviller
,
G.
,
Puigt
,
G.
, and
Airiau
,
C.
,
2015
, “
Modal Structure of a Supersonic Under-Expanded Jet
,”
22ème Congrès Français de Mécanique
, Lyons, France Aug. 24–28.
7.
Pérez Arroyo
,
C.
,
Puigt
,
G.
, and
Boussuge
,
J.-F.
,
2016
, “
Large Eddy Simulation of Shock-Cell Noise From a Dual Stream Jet
,”
AIAA
Paper No. 2016-2798.
8.
Pérez Arroyo
,
C.
,
Daviller
,
G.
,
Puigt
,
G.
, and
Airiau
,
C.
,
2015
, “
Hydrodynamic—Acoustic Filtering of a Supersonic Under-Expanded Jet
,”
ERCOFTAC Workshop Direct and Large-Eddy Simulation 10
, (DLES10), Limassol, Cyprus, May 27–29.
9.
Gefen
,
L.
,
Pérez Arroyo
,
C.
,
Camussi
,
R.
,
Puigt
,
G.
, and
Airiau
,
C.
,
2016
, “
Broadband Shock-Cell Noise Signature Identification Using a Wavelet-Based Method
,”
AIAA
Paper No. 2016-2732.
10.
Granados-Ortiz
,
F.-J.
,
Lai
,
C.-H.
,
Pérez Arroyo
,
C.
,
Puigt
,
G.
, and
Airiau
,
C.
,
2016
, “
Uncertainty Quantification and Sensitivity Analysis Applied to an Under-Expanded Single Jet
,”
AIAA
Paper No. 2016-4091.
11.
Gand
,
F.
,
2016
, “
Investigation of Turbulence Development in Incompressible Jets With Zonal Detached Eddy Simulation (ZDES) and Synthetic Turbulent Inflow
,”
Int. J. Heat Fluid Flow
,
61
(B), pp.
425
437
.
12.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2015
, “
An Enhanced Version of DES With Rapid Transition From RANS to LES in Separated Flows
,”
Flow, Turbul. Combust.
,
95
(
1
), pp.
709
737
.
13.
Brunet
,
V.
,
2012
, “
Random Flow Generation Technique for Civil Aircraft Jet Simulations With the ZDES Approach
,” Progress in Hybrid RANS-LES Modelling, Vol. 117, Springer-Verlag, Berlin, Germany, pp.
193
204
.
14.
Bres
,
G. A.
,
Jaunet
,
V.
,
Le Rallic
,
M.
,
Jordan
,
P.
,
Colonius
,
T.
, and
Lele
,
S. K.
,
2015
, “
Large Eddy Simulation for Jet Noise: The Importance of Getting the Boundary Layer Right
,”
AIAA
Paper No. 2015-2535.
15.
Cetin
,
M. O.
,
Pauz
,
V.
,
Meinke
,
M.
, and
Schröder
,
W.
,
2016
, “
Computational Analysis of Nozzle Geometry Variations for Subsonic Turbulent Jets
,”
Comput. Fluids
,
136
, pp.
467
484
.
16.
Verrière
,
J.
,
Gand
,
F.
, and
Deck
,
S.
,
2016
, “
Zonal Detached-Eddy Simulations of a Dual-Stream Jet
,”
AIAA J.
,
54
(
10
), pp.
3176
3190
.
17.
Tyacke
,
J. C.
,
Mahak
,
M.
, and
Tucker
,
P. G.
,
2016
, “
Large-Scale Multifidelity, Multiphysics, Hybrid Reynolds-Averaged Navier–Stokes/Large-Eddy Simulation of an Installed Aeroengine
,”
J. Propul. Power
,
32
(
4
), pp.
997
1008
.
18.
Vogel
,
P.
,
Bin
,
J.
, and
Sinha
,
N.
,
2016
, “
LES Predictions of Jet Noise for a Pylon-Mounted Dual Stream Nozzle and Jet Surface Interactions
,”
ASME
Paper No. GT2016-58175.
19.
Rahier
,
G.
,
Huet
,
M.
, and
Prieur
,
J.
,
2015
, “
Additional Terms for the Use of Ffowcs Williams and Hawkings Surface Integrals in Turbulent Flows
,”
Comput. Fluids
,
120
, pp.
158
172
.
20.
Lyubimov
,
D. A.
,
2012
, “
Development and Application of a High-Resolution Technique for Jet Flow Computation Using Large Eddy Simulation
,”
High Temp.
,
50
(
3
), pp.
420
436
.
21.
Rosa
,
V.
,
Self
,
R.
,
Ilario
,
C.
,
Naqavi
,
I.
, and
Tucker
,
P. G.
,
2016
, “
Modelling Velocity Correlations With LES and RANS for Prediction of Noise From Isothermal and Hot Jets
,”
AIAA
Paper No. 2016-2810.
22.
Karabasov
,
S. A.
,
Afsar
,
M. Z.
,
Hynes
,
T. P.
,
Dowling
,
A. P.
,
McMullan
,
W. A.
,
Pokora
,
C. D.
,
Page
,
G. J.
, and
McGuirk
,
J. J.
,
2010
, “
Jet Noise: Acoustic Analogy Informed by Large Eddy Simulation
,”
AIAA J.
,
48
(
7
), pp.
1312
1325
.
23.
Depuru Mohan
,
N. K.
, and
Dowling
,
A. P.
,
2016
, “
Jet-Noise-Prediction Model for Chevrons and Microjets
,”
AIAA J.
,
54
(
12
), pp.
3928
3940
.
24.
Towne
,
A.
,
Jordan
,
P.
,
Colonius
,
T.
,
Jaunet
,
V.
,
Schmidt
,
O. T.
, and
Bres
,
G. A.
,
2016
, “
Trapped Acoustic Waves in the Potential Core of Subsonic Jets
,”
AIAA
Paper No. 2016-2809.
25.
Lapworth
,
B.
,
2004
, “
HYDRA CFD: A Framework for Collaborative CFD Development
,”
International Conference on Scientific and Engineering Computation
(IC-SEC), Singapore, June 30–July 2.
26.
Naqavi
,
I. Z.
,
Mahak
,
M.
,
Wang
,
Z.-N.
,
Tucker
,
P. G.
, and
Strange
,
P.
,
2014
, “
An Assessment of Far-Field Noise Prediction for Subsonic Jets Using Large Eddy Simulation and Ffowcs Williams–Hawkings Method
,”
22nd Annual Conference
of the CFD Society of Canada, Toronto, Canada, June 1–4, Paper No. 323.
27.
Wang
,
Z.-N.
,
Naqavi
,
I. Z.
,
Mahak
,
M.
,
Tucker
,
P. G.
,
Yuan
,
X.
, and
Strange
,
P.
,
2014
, “
Far Field Noise Prediction for Subsonic Hot and Cold Jets Using Large-Eddy Simulation
,”
ASME
Paper No. GT2014-27290.
28.
Xia
,
H.
,
Tucker
,
P. G.
, and
Eastwood
,
S.
,
2009
, “
Large-Eddy Simulations of Chevron Jet Flows With Noise Predictions
,”
Int. J. Heat Fluid Flow
,
30
(
6
), pp.
1067
1079
.
29.
Tyacke
,
J.
,
Tucker
,
P.
,
Jefferson-Loveday
,
R.
,
Rao Vadlamani
,
N.
,
Watson
,
R.
,
Naqavi
,
I.
, and
Yang
,
X.
,
2013
, “
Large Eddy Simulation for Turbines: Methodologies, Cost and Future Outlooks
,”
ASME J. Turbomach.
,
136
(
6
), p.
061009
.
30.
Tyacke
,
J. C.
, and
Tucker
,
P. G.
,
2015
, “
Future Use of Large Eddy Simulation in Aero-Engines
,”
ASME J. Turbomach.
,
137
(
8
), p.
081005
.
31.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aérosp.
,
1
(
1
), pp.
5
21
.
32.
Tucker
,
P. G.
,
2003
, “
Differential Equation-Based Wall Distance Computation for DES and RANS
,”
J. Comput. Phys.
,
190
(
1
), pp.
229
248
.
33.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations—I: The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
165
.
34.
Watson
,
R.
,
Tucker
,
P. G.
,
Wang
,
Z.-N.
, and
Yuan
,
X.
,
2015
, “
Towards Robust Unstructured Turbomachinery Large Eddy Simulation
,”
Comput. Fluids
,
118
, pp.
245
254
.
35.
Jameson
,
A.
,
2007
, “
Formulation of Kinetic Energy Preserving Conservative Schemes for Gas Dynamics and Direct Numerical Simulation of One-Dimensional Viscous Compressible Flow in a Shock Tube Using Entropy and Kinetic Energy Preserving Schemes
,”
J. Sci. Comput.
,
34
(
2
), pp.
188
208
.
36.
Kawai
,
S.
,
Shankar
,
S. K.
, and
Lele
,
S. K.
,
2010
, “
Assessment of Localized Artificial Diffusivity Scheme for Large-Eddy Simulation of Compressible Turbulent Flows
,”
J. Comput. Phys.
,
229
(
5
), pp.
1739
1762
.
37.
Hill
,
D.
, and
Pullin
,
D.
,
2004
, “
Hybrid Tuned Center-Difference-WENO Method for Large Eddy Simulations in the Presence of Strong Shocks
,”
J. Comput. Phys.
,
194
(
2
), pp.
435
450
.
38.
Tam
,
C. K. W.
,
1998
, “
Advances in Numerical Boundary Conditions for Computational Aeroacoustics
,”
J. Comput. Acoust.
,
6
(
4
), pp.
377
402
.
39.
Bogey
,
C.
, and
Bailly
,
C.
,
2002
, “
Three-Dimensional Non-Reflective Boundary Conditions for Acoustic Simulations: Far Field Formulation and Validation Test Cases
,”
Acta Acust. Acust.
,
88
(4), pp.
463
471
.
40.
Poinsot
,
T. J.
, and
Lelef
,
S. K.
,
1992
, “
Boundary Conditions for Direct Simulations of Compressible Viscous Flows
,”
J. Comput. Phys.
,
101
(
1
), pp.
104
129
.
41.
Bogey
,
C.
,
Marsden
,
O.
, and
Bailly
,
C.
,
2012
, “
Influence of Initial Turbulence Level on the Flow and Sound Fields of a Subsonic Jet at a Diameter-Based Reynolds Number of 105
,”
J. Fluid Mech.
,
701
(
5
), pp.
352
385
.
42.
Uzun
,
A.
, and
Hussaini
,
M. Y.
,
2012
, “
Some Issues in Large-Eddy Simulations for Chevron Nozzle Jet Flows
,”
J. Propul. Power
,
28
(
2
), pp.
246
258
.
43.
Birch
,
S. F.
,
2006
, “
A Review of Axisymmetric Jet Flow Data for Noise Applications
,”
AIAA
Paper No. 2006-2602.
44.
Batten
,
P.
,
Goldberg
,
U.
, and
Chakravarthy
,
S.
,
2004
, “
Interfacing Statistical Turbulence Closures With Large-Eddy Simulation
,”
AIAA J.
,
42
(
3
), pp.
485
492
.
45.
Keating
,
A.
,
Piomelli
,
U.
,
Balaras
,
E.
, and
Kaltenbach
,
H.-J.
,
2004
, “
A Priori and a Posteriori Tests of Inflow Conditions for Large-Eddy Simulation
,”
Phys. Fluids
,
16
(
12
), pp.
4696
4712
.
46.
Perret
,
L.
,
Delville
,
J.
,
Manceau
,
R.
, and
Bonnet
,
J.-P.
,
2008
, “
Turbulent Inflow Conditions for Large-Eddy Simulation Based on Low-Order Empirical Model
,”
Phys. Fluids
,
20
(
7
), p.
075107
.
47.
Laraufie
,
R.
,
Deck
,
S.
, and
Sagaut
,
P.
,
2011
, “
A Dynamic Forcing Method for Unsteady Turbulent Inflow Conditions
,”
J. Comput. Phys.
,
230
(
23
), pp.
8647
8663
.
48.
Lund
,
T. S.
,
Wu
,
X.
, and
Squires
,
K. D.
,
1998
, “
Generation of Turbulent Inflow Data for Spatially-Developing Boundary Layer Simulations
,”
J. Comput. Phys.
,
140
(
2
), pp.
233
258
.
49.
Tucker
,
P.
,
Coupland
,
J.
,
Eastwood
,
S.
,
Liu
,
Y.
,
Jefferson-Loveday
,
R.
, and
Hassan
,
O.
,
2006
, “
Contrasting Code Performances for Computational Aeroacoustics of Jets
,”
AIAA
Paper No. 2006-2672.
50.
Mendez
,
S.
,
Shoeybi
,
M.
,
Sharma
,
A.
,
Ham
,
F. E.
,
Lele
,
S. K.
, and
Moin
,
P.
,
2012
, “
Large-Eddy Simulations of Perfectly Expanded Supersonic Jets Using an Unstructured Solver
,”
AIAA J.
,
50
(
5
), pp.
1103
1118
.
51.
Shur
,
M. L.
,
Spalart
,
P. R.
, and
Strelets
,
M. K.
,
2005
, “
Noise Prediction for Increasingly Complex Jets—Part I: Methods and Tests
,”
Int. J. Aeroacoustics
,
4
(
3–4
), pp.
213
246
.
52.
Bres
,
G. A.
,
Nichols
,
J. W.
,
Lele
,
S. K.
, and
Ham
,
F. E.
,
2012
, “
Towards Best Practices for Jet Noise Predictions With Unstructured Large Eddy Simulations
,”
AIAA
Paper No. 2012-2965.
53.
Brès
,
G. A.
,
Khalighi
,
Y.
,
Ham
,
F.
, and
Lele
,
S. K.
,
2011
, “
Unstructured Large Eddy Simulation Technology for Aeroacoustics of Complex Jet Flows
,” 40th International Congress and Exposition on Noise Control Engineering (
Inter-Noise 2011
), Osaka, Japan, Sept. 4–7, pp. 401–410.
54.
Brown
,
C.
, and
Bridges
,
J.
,
2006
, “
Acoustic Efficiency of Azimuthal Modes in Jet Noise Using Chevron Nozzles
,”
AIAA
Paper No. 2006-2645.
55.
Mendez
,
S.
,
Shoeybi
,
M.
,
Lele
,
S. K.
, and
Moin
,
P.
,
2013
, “
On the Use of the Ffowcs Williams–Hawkings Equation to Predict Far-Field Jet Noise From Large-Eddy Simulations
,”
Int. J. Aeroacoustics
,
12
(
1–2
), pp.
1
20
.
56.
Mendez
,
S.
,
Shoeybi
,
M.
,
Sharma
,
A.
,
Lele
,
S. K.
, and
Moin
,
P.
,
2009
, “
Post-Processing of Large-Eddy Simulations for Jet Noise Predictions
,”
Center for Turbulence Research
, Stanford University, Stanford, CA, Annual Research Briefs, pp.
17
31
.
57.
Naqavi
,
I. Z.
,
Wang
,
Z.-N.
, and
Tucker
,
P. G.
,
2016
, “
Far-Field Noise Prediction for Jets Using Large-Eddy Simulation (LES) and Ffowcs Williams–Hawkings (FW-H) Method
,”
Int. J. Aeroacoustics
,
15
(
8
), pp.
757
780
.
58.
Meuer
,
H.
,
Strohmaier
,
E.
,
Dongarra
,
J.
,
Simon
,
H.
, and
Meuer
,
S.
,
2015
, “
Top 500 Supercomputer List
,” www.top500.org.
59.
Bridges
,
J.
, and
Wernet
,
M. P.
,
2010
, “
Establishing Consensus Turbulence Statistics for Hot Subsonic Jets
,”
AIAA
Paper 2010-3751.
60.
Tinney
,
C. E.
, and
Jordan
,
P.
,
2008
, “
The Near Pressure Field of Co-Axial Subsonic Jets
,”
J. Fluid Mech.
,
611
, pp.
175
204
.
You do not currently have access to this content.