In this two-part paper, the investigation of condensation in the impeller of radial turbines is discussed. In Paper I, a solution strategy for the investigation of condensation in radial turbines using computational fluid dynamics (CFD) methods is presented. In Paper II, the investigation methodology is applied to a radial turbine type series that is used for waste heat recovery. First, the basic CFD approach for the calculation of the gas-droplet-liquid-film flow is introduced. Thereafter, the equations connecting the subparts are explained and a validation of the models is performed. Finally, in Paper I, condensation phenomena for a selected radial turbine impeller are discussed on a qualitative basis. Paper II continues with a detailed quantitative analyses. The aim of Paper I is to explain the models that are necessary to study condensation in radial turbines and to validate the implementation against available experiments conducted on isolated effects. This study aims to develop a procedure that is applicable for investigation of condensation in radial turbines. Furthermore, the main processes occurring in a radial turbine once the steam temperature is below the saturation temperature are explained and analyzed.

References

1.
Schuster
,
S.
,
2016
,
Untersuchung Der Entstehung Und Bewegung Von Flüssigkeitsansammlungen Auf Radialturbinenlaufradschaufeln Mit Einem Erweiterten Navier-Stokes-Löser
,
Shaker Verlag
,
Aachen, Germany
.
2.
Schuster
,
S.
,
Brillert
,
D.
, and
Benra
,
F.-K.
,
2017
, “
Condensation in Radial Turbines—Part II: Application of the Mathematical Model to a Radial Turbine Series
,”
ASME J. Turbomach.
, accepted.
3.
Baumann
,
K.
,
1912
, “
Recent Developments in Steam Turbine Practice
,”
J. Inst. Electr. Eng.
,
48
(
213
), pp.
768
842
.
4.
Gyarmathy
,
G.
,
1962
, “
Grundlagen einer Theorie der Nassdampfturbine
,” Diss. Techn.Wiss. ETH Zürich, Nr. 3221. Ref.: Traupel, W.; Korref.: Ackeret, J–Zürich, 3221, Zürich, Switzerland.
5.
Bakhtar
,
F.
,
Young
,
J. B.
,
White
,
A. J.
, and
Simpson
,
D. A.
,
2005
, “
Classical Nucleation Theory and Its Application to Condensing Steam Flow Calculations
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
219
(
12
), pp.
1315
1333
.
6.
Moore
,
M. J.
,
Walters
,
P. T.
,
Crane
,
R. I.
, and
Davidson
,
B. J.
,
1973
, “
Predicting the Fog-Drop Size in Wet-Steam Turbines
,” Instn. Mech. Engrs., Conference Publication 3, Paper No. C37/73.
7.
Gyarmathy
,
G.
,
2005
, “
Nucleation of Steam in High-Pressure Nozzle Experiments
,”
Sixth Conference on Turbomachinery: Fluid Dynamics and Thermodynamics
, Lille, France, Mar. 7–11, pp. 1–12.
8.
Dorey
,
J. M.
,
Stanciu
,
M.
,
Ren
,
K. F.
,
Marechal
,
J. P.
,
Morel
,
P.
,
David
,
L.
, and
Fendler
,
Y.
,
2011
, “
Steam Condensation Experiments in Three Homothetic Nozzles
,”
Ninth European Conference on Turbomachinery
, Vol.
2
, pp.
1003
1015
.
9.
Bakhtar
,
F.
,
Webb
,
R. A.
,
Shojaee-Fard
,
M. H.
, and
Siraj
,
M. A.
,
1993
, “
An Investigation of Nucleating Flows of Steam in a Cascade of Turbine Blading
,”
ASME J. Fluids Eng.
,
115
(
1
), pp.
128
134
.
10.
Bakhtar
,
F.
,
Mamat
,
Z. A.
,
Jadayel
,
O. C.
, and
Mahpeykar
,
M. R.
,
2009
, “
On the Performance of a Cascade of Improved Turbine Nozzle Blades in Nucleating Steam—Part 1: Surface Pressure Distributions
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
223
(
8
), pp.
1903
1914
.
11.
White
,
A. J.
,
Young
,
J. B.
, and
Walters
,
P. T.
,
1996
, “
Experimental Validation of Condensing Flow Theory for a Stationary Cascade of Steam Turbine Blades
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
354
(
1704
), pp.
59
88
.
12.
White
,
A. J.
,
2003
, “
A Comparison of Modelling Methods for Polydispersed Wet-Steam Flow
,”
Int. J. Numer. Methods Eng.
,
57
(
6
), pp.
819
834
.
13.
Yau
,
K. K.
, and
Young
,
J. B.
,
1987
, “
The Deposition of Fog Droplets on Steam Turbine Blades by Turbulent Diffusion
,”
ASME J. Turbomach.
,
109
(
3
), pp.
429
435
.
14.
Young
,
J. B.
, and
Yau
,
K. K.
,
1988
, “
The Inertial Deposition of Fog Droplets on Steam Turbine Blades
,”
ASME J. Turbomach.
,
110
(
2
), pp.
155
162
.
15.
Crane
,
R. I.
,
2004
, “
Droplet Deposition in Steam Turbines
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
218
(
8
), pp.
859
870
.
16.
Starzmann
,
J.
,
Casey
,
M. V.
, and
Mayer
,
J. F.
,
2013
, “
Water Droplet Flow Paths and Droplet Deposition in Low Pressure Steam Turbines
,”
High Perform. Comput. Sci.
,
12
, pp.
351
365
.
17.
Starzmann
,
J.
,
Kaluza
,
P.
,
Casey
,
M. V.
, and
Sieverding
,
F.
,
2013
, “
On Kinematic Relaxation and Deposition of Water Droplets in the Last Stages of Low Pressure Steam Turbines
,”
ASME
Paper No. GT2013-95179.
18.
Young
,
J. B.
,
Yau
,
K. K.
, and
Walters
,
P. T.
,
1988
, “
Fog Droplet Deposition and Coarse Water Formation in Low-Pressure Steam Turbines: A Combined Experimental and Theoretical Analysis
,”
ASME J. Turbomach.
,
110
(
2
), pp.
163
172
.
19.
Williams
,
J.
, and
Young
,
J. B.
,
2007
, “
Movement of Deposited Water on Turbomachinery Rotor Blade Surfaces
,”
ASME J. Turbomach.
,
129
(
2
), pp.
394
403
.
20.
Stanton
,
D. W.
, and
Rutland
,
C. J.
,
1998
, “
Multi-Dimensional Modeling of Thin Liquid Films and Spray-Wall Interactions Resulting From Impinging Sprays
,”
Int. J. Heat Mass Transfer
,
41
(
20
), pp.
3037
3054
.
21.
Sattelmayer
,
T. F.
,
1985
,
Zum Einfluss der ausgebildeten, turbulenten Luft-Flüssigkeitsfilm-Strömung auf den Filmzerfall und die Tropfenbildung am Austritt von Spalten geringer Höhe
,
Diss.–Karlsruhe, Germany
.
22.
Arienti
,
M.
,
Wang
,
L.
,
Corn
,
M.
,
Li
,
X.
,
Soteriou
,
M. C.
,
Shedd
,
T. A.
, and
Herrmann
,
M.
,
2011
, “
Modeling Wall Film Formation and Breakup Using an Integrated Interface-Tracking/Discrete-Phase Approach
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), pp. 1–7.
23.
Gepperth
,
S.
,
Müller
,
A.
,
Koch
,
R.
, and
Bauer
,
H.-J.
,
2012
, “
Ligament and Droplet Characteristics in Prefilming Airblast Atomization
,”
12th Triennial International Conference on Liquid Atomization and Spray Systems (ICLASS)
, Heidelberg, Germany, Sept. 2–6.
24.
Hinze
,
J. O.
,
1949
, “
Critical Speeds and Sizes of Liquid Globules
,”
Appl. Sci. Res.
,
1
(
1
), pp.
273
288
.
25.
Pilch
,
M.
, and
Erdman
,
C. A.
,
1987
, “
Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-Induced Breakup of a Liquid Drop
,”
Int. J. Multiphase Flow
,
13
(
6
), pp.
741
757
.
26.
Crowe
,
C. T.
,
Sharma
,
M. P.
, and
Stock
,
D. E.
,
1977
, “
Particle-Source-in Cell (Psi-Cell) Model for Gas-Droplet Flows
,”
ASME J. Fluids Eng.
,
99
(
2
), pp.
325
332
.
27.
Abraham
,
F. F.
,
1974
,
Homogeneous Nucleation Theory: The Pretransition Theory of Vapor Condensation
,
Academic Press
,
New York
.
28.
Kantrowitz
,
A.
,
1951
, “
Nucleation in Very Rapid Vapor Expansions
,”
J. Chem. Phys.
,
19
(
9
), pp.
1097
1100
.
29.
Vehkamäki
,
H.
,
2011
,
Classical Nucleation Theory in Multicomponent Systems
,
Springer
,
Berlin/London
.
30.
Gerber
,
A. G.
,
2002
, “
Two-Phase Eulerian/Lagrangian Model for Nucleating Steam Flow
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
465
475
.
31.
Schuster
,
S.
,
Benra
,
F. K.
,
Dohmen
,
H. J.
,
König
,
S.
, and
Martens
,
U.
,
2014
, “
Sensitivity Analysis of Condensation Model Constants on Calculated Liquid Film Motion in Radial Turbines
,”
ASME
Paper No. GT2014-25652.
32.
Gyarmathy
,
G.
,
1976
, “
Condensation in Flowing Steam
,”
Two-Phase Steam Flow in Turbines and Separators: Theory, Instrumentation, Engineering
,
M. J.
Moore
and
C. H.
Sieverding
, eds.,
Hemisphere Publishing Corporation
,
Washington, DC
.
33.
Schuster
,
S.
,
Benra
,
F.-K.
,
Dohmen
,
H. J.
,
König
,
S.
, and
Martens
,
U.
,
2012
, “
Influence of Different Gas Models on the Numerical Results of High-Velocity Condensation
,” The 15th International Conference on Fluid Flow Technologies, Budapest, Hungary, Sept. 4–7.
34.
Starzmann
,
J.
,
Hughes
,
F. R.
,
Schuster
,
S.
,
White
,
A. J.
,
Halama
,
J.
,
Hric
,
V.
,
Kolovratník
,
M.
,
Lee
,
H.
,
Sova
,
L.
,
Št'astný
,
M.
,
Grübel
,
M.
,
Schatz
,
M.
,
Vogt
,
D. M.
,
Patel
,
Y.
,
Patel
,
G.
,
Turunen-Saaresti
,
T.
,
Gribin
,
V.
,
Tishchenko
,
V.
,
Gavrilov
,
I.
,
Kim
,
C.
,
Baek
,
J.
,
Wu
,
X.
,
Yang
,
J.
,
Dykas
,
S.
,
Wróblewski
,
W.
,
Yamamoto
,
S.
,
Feng
,
Z.
, and
Li
,
L.
,
2018
, “
Results of the International Wet Steam Modelling Project
,”
Proc. Inst. Mech. Eng., Part A
,
232
(
5
), pp.
550
570
.
35.
Schiller
,
L.
, and
Naumann
,
A.
,
1933
, “
Über die grundlegende Berechnung bei der Schwerkraftaufbereitung
,”
Z. Des Vereins Dtsch. Ing.
,
77
(
12
), pp.
318
320
.
36.
Cunningham
,
E.
,
1910
, “
On the Velocity of Steady Fall of Spherical Particles Through Fluid Medium
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
83
(
563
), pp.
357
365
.
37.
Gosman
,
A. D.
, and
Ioannides
,
E.
,
1983
, “
Aspects of Computer Simulation of Liquid-Fueled Combustors
,”
J. Energy
,
7
(
6
), pp.
482
490
.
38.
Guha
,
A.
,
2008
, “
Transport and Deposition of Particles in Turbulent and Laminar Flow
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
311
341
.
39.
ANSYS
, 2009, “
ANSYS® Academic Research CFX, Release 12.1
,” ANSYS, Inc., Canonsburg, PA.
40.
Ounis
,
H.
,
Ahmadi
,
G.
, and
McLaughlin
,
J. B.
,
1991
, “
Dispersion and Deposition of Brownian Particles From Point Sources in a Simulated Turbulent Channel Flow
,”
J. Colloid Interface Sci.
,
147
(
1
), pp.
233
250
.
41.
Lantermann
,
U.
,
2006
,
Simulation Der Transport- Und Depositionsvorgänge Von Nanopartikeln in Der Gasphase Mittels Partikel-Monte-Carlo- Und Lattice-Boltzmann-Methoden
,
University of Duisburg-Essen
,
Duisburg, Germany
.
42.
Sommerfeld
,
M.
,
2006
, “
Theoretical and Experimental Modelling of Particulate Flows
,”
Von Karman Institute for Fluid Dynamics
(Lecture Series 2000–06), von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium, p.
20
.
43.
Talbot
,
L.
,
Cheng
,
R. K.
,
Schefer
,
R. W.
, and
Willis
,
D. R.
,
1980
, “
Thermophoresis of Particles in a Heated Boundary Layer
,”
J. Fluid Mech.
,
101
(
4
), pp.
737
758
.
44.
Ryley
,
D. J.
, and
Davies
,
J. B.
,
1983
, “
Effect of Thermophoresis on Fog Droplet Deposition on Low Pressure Steam Turbine Guide Blades
,”
Int. J. Heat Fluid Flow
,
4
(
3
), pp.
161
167
.
45.
Liu
,
B. Y.
, and
Agarwal
,
J. K.
,
1974
, “
Experimental Observation of Aerosol Deposition in Turbulent Flow
,”
J. Aerosol Sci.
,
5
(
2
), pp.
145
155
.
46.
Sehmel
,
G. A.
,
1968
,
Aerosol Deposition From Turbulent Airstreams in Vertical Conduits
, Vol.
578
,
Washington Pacific Northwest Laboratory BNWL
,
Battelle-Northwest, Richland, WA
.
47.
Wu
,
Z.
, and
Young
,
J. B.
,
2012
, “
The Deposition of Small Particles From a Turbulent Air Flow in a Curved Duct
,”
Int. J. Multiphase Flow
,
44
, pp.
34
47
.
48.
Schuster
,
S.
,
Benra
,
F.-K.
, and
Brillert
,
D.
,
2017
, “
Droplet Deposition in Radial Turbines
,”
Eur. J. Mech.-B/Fluids
,
61
(
2
), pp.
289
296
.
49.
Schuster
,
S.
,
Benra
,
F.-K.
, and
Brillert
,
D.
,
2017
, “
Reliability of Condensation Models for Droplet Deposition Calculations in Radial Turbines
,”
Wet Steam Conference
, pp.
1
12
.
50.
Lienhard
,
I. V. J. H.
, and
Lienhard
,
V. J. H.
,
2012
,
A Heat Transfer Text Book
. 4 ed.,
Cambridge Massachusetts Phlogiston Press
, Cambridge, MA.
51.
Ferziger
,
J. H.
, and
Perić
,
M.
,
2008
,
Numerische Strömungsmechanik
,
Springer
,
Berlin
.
52.
Wittig
,
S.
,
Himmelsbach
,
J.
,
Noll
,
B.
,
Feld
,
H. J.
, and
Samenfink
,
W.
,
1992
, “
Motion and Evaporation of Shear-Driven Liquid Films in Turbulent Gases
,”
ASME J. Eng. Gas Turbines Power
,
114
(
2
), pp.
395
400
.
53.
Eisfeld
,
T.
,
2011
,
Experimentelle Untersuchung Der Aerodynamik Einer Mit Wassertropfen Beladenen Luftströmung in Einem Ebenen Verdichtergitter
,
Helmut-Schmidt-Univ. Bibliothek
,
Hamburg, Germany
.
54.
Schmehl
,
R.
,
2004
,
Tropfendeformation Und Nachzerfall Bei Der Technischen Gemischaufbereitung
,
Logos-Verl
,
Berlin
.
55.
Wagner
,
W.
, and
Kretzschmar
,
H.-J.
,
2008
,
International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97
,
Springer-Verlag Berlin Heidelberg
,
Berlin, Heidelberg
.
56.
Fakhari
,
K.
,
2009
, “
On the Effects of Unsteadiness on the Condensation Process in Low-Pressure Steam Turbines
,”
ASME
Paper No. GT2009-60078.
You do not currently have access to this content.