Gas turbine design has been characterized over the years by a continuous increase of the maximum cycle temperature, justified by a corresponding increase of cycle efficiency and power output. In such way, turbine components heat load management has become a compulsory activity, and then, a reliable procedure to evaluate the blades and vanes metal temperatures is, nowadays, a crucial aspect for a safe components design. In the framework of the design and validation process of high pressure turbine cooled components of the BHGE NovaLTTM 16 gas turbine, a decoupled methodology for conjugate heat transfer prediction has been applied and validated against measurement data. The procedure consists of a conjugate heat transfer analysis in which the internal cooling system (for both airfoils and platforms) is modeled by an in-house one-dimensional thermo-fluid network solver, the external heat loads and pressure distribution are evaluated through 3D computational fluid dynamics (CFD) analysis and the heat conduction in the solid is carried out through a 3D finite element method (FEM) solution. Film cooling effect has been treated by means of a dedicated CFD analysis, implementing a source term approach. Predicted metal temperatures are finally compared with measurements from an extensive test campaign of the engine in order to validate the presented procedure.

References

1.
Kassab
,
A.
,
Divo
,
E.
,
Heidmann
,
J.
,
Steinthorsson
,
E.
, and
Rodriguez
,
F.
,
2003
, “
BEM/FVM Conjugate Heat Transfer Analysis of a Three-Dimensional Film Cooled Turbine Blade
,”
Int. J. Numer. Methods Heat Fluid Flow
,
13
(
5
), pp.
581
610
.
2.
York
,
W. D.
, and
Leylek
,
J. H.
,
2003
, “
Three-Dimensional Conjugate Heat Transfer Simulation of an Internally-Cooled Gas Turbine Vane
,”
ASME
Paper No. GT2003-38551
.
3.
Bohn
,
D.
,
Bonhoff
,
B.
, and
Schonenborn
,
H.
,
1995
, “
Combined Aerodynamic and Thermal Analysis of a High-Pressure Turbine Nozzle Guide Vane
,” Report No. RWTH-CONV-174593.
4.
Bohn
,
D.
,
Bonhoff
,
B.
,
Schonenborn
,
H.
, and
Wilhelmi
,
H.
,
1995
, “
Prediction of the Film-Cooling Effectiveness of a Gas Turbine Blades Using a Numerical
,”
AIAA
Paper No. 95-7105
.
5.
Takahashi
,
T.
,
Watanabe
,
K.
,
Takahashi
,
T.
, and
Wilhelmi
,
H.
,
2000
, “
Thermal Conjugate Analysis of a First Stage Blade in a Gas Turbine
,”
ASME
Paper No. GT2000-0251.
6.
Kassab
,
A.
,
Divo
,
E.
,
Heidmann
,
J.
,
Steinthorsson
,
E.
, and
Rodriguez
,
F.
,
2003
, “
Conjugate Heat Transfer Effects on a Realistic Film Cooled Turbine Vane
,”
ASME
Paper No. GT2003-38553
.
7.
Han
,
J. C.
,
Ortman
,
D.
, and
Lee
,
C.
,
1982
, “
A Computer Model for Gas Turbine Blade Cooling Analysis
,”
ASME
Paper No. 82-JPGC-GT-6.
8.
Kumar
,
B.
, and
Prasad
,
B.
,
2006
, “
A Combined CFD and Network Approach for a Simulated Turbine Blade Cooling System
,”
Indian J. Eng. Mater. Sci.
,
13
, pp.
195
201
.
9.
Carcasci
,
C.
,
Facchini
,
B.
, and
Ferrara
,
G.
,
1995
, “
A Rotor Blade Cooling Design Method for Heavy Duty Gas Turbine Applications
,”
ASME
Paper No. 95-CTP-90
.
10.
Carcasci
,
C.
, and
Facchini
,
B.
,
1996
, “
A Numerical Procedure to Design Internal Cooling of Gas Turbine Stator Blades
,”
Rev. Gén. Therm.
,
35
(
412
), pp.
257
268
.
11.
Arnone
,
A.
,
Liou
,
M. S.
, and
Povinelli
,
L. A.
,
1992
, “
Navier-Stokes Solution of Transonic Cascade Flow Using Non-Periodic C-Type Grids
,”
ASME J. Propul. Power
,
8
(
2
) pp.
410
417
.
12.
Zecchi
,
S.
,
Arcangeli
,
L.
,
Facchini
,
B.
, and
Coutandin
,
D.
,
2004
, “
Features of a Cooling System Simulation Tool Used in Industrial Preliminary Design Stage
,”
ASME
Paper No. GT2004-53547
.
13.
Hylton
,
L. D.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No.
NASA CR-168015
.https://ntrs.nasa.gov/search.jsp?R=19830020105
14.
Alizadeh
,
M.
,
Izadi
,
A.
, and
Fathi
,
A.
,
2014
, “
Sensitivity Analysis on Turbine Blade Temperature Distribution Using Conjugate Heat Transfer Simulation
,”
ASME J. Turbomach.
,
136
(
1
), p.
011001
.
15.
Andrei
,
L.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Winchler
,
L.
,
2014
, “
An in House Developed Decoupled Procedure: Application and Validation on a Gas Turbine Vane With Different Cooling Configurations
,”
Energy Procedia
,
45
, pp.
1087
1096
.
16.
Hylton
,
L. D.
,
Nirmalan
,
N. V.
,
Sultanian
,
B. K.
, and
Kaufman
,
R. M.
,
1988
, “
The Effects of Leading Edge and Downstream Film Cooling on Turbine Vane Heat Transfer
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No.
NASA CR-182133
.https://ntrs.nasa.gov/search.jsp?R=19890004383
17.
Bonini
,
A.
,
Andreini
,
A.
,
Carcasci
,
C.
,
Facchini
,
B.
,
Ciani
,
A.
, and
Innocenti
,
L.
,
2012
, “
Conjugate Heat Transfer Calculations on GT Rotor Blade for Industrial Applications—Part I: Equivalent Internal Fluid Network Setup
,”
ASME
Paper No. GT2012-69846
.
18.
Andrei
,
L.
,
Innocenti
,
L.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Winchler
,
L.
,
2017
, “
Film Cooling Modeling for Gas Turbine Nozzles and Blades: Validation and Application
,”
ASME J. Turbomach.
,
139
(
1
), p.
011004
.
19.
Winchler
,
L.
,
2016
, “
Design Tools and Innovative Concepts for Gas Turbine Cooling Applications
,” Ph.D. thesis, Università degli Studi di Firenze, Dipartimento di Ingegneria Industriale, Florence, Italy
20.
L'Ecuyer
,
M. R.
, and
Soechting
,
F. O.
,
1985
,
A Model for Correlating Flat Plate Film-Cooling Effectiveness for Rows of Round Holes
, AGARD Heat Transfer and Cooling in Gas Turbines, Anatalia, Turkey, p.12.
21.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Correlation of Film-Cooling Effectiveness From Thermographic Measurements at Engine-Like Conditions
,”
ASME J. Turbomach
,
124
(
4
), pp.
686
698
.
22.
Florschuetz
,
L.
,
Truman
,
C.
, and
Metzger
,
D.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
, pp.
337
342
.
23.
Faulkner
,
F. E.
,
1971
, “
Analytical Investigation of Chord Size and Cooling Methods on Turbine Blade Cooling Requirements
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No.
NASA CR-120882
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19730009082.pdf
24.
Metzger
,
D.
,
Shepard
,
W.
, and
Haley
,
S.
,
1986
, “
Row Resolved Heat Transfer Variations in Pin-Fin Arrays Including Effects of Non-Uniform Arrays and Flow Convergence
,”
ASME
Paper No. 86-GT-132
.
25.
Goldstein
,
R. J.
,
1971
, “
Film Cooling
,”
Adv. Heat Transfer
,
7
, pp.
321
379
.
26.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2001
, “
Effect of Crossflows on the Discharge Coefficient of Film Cooling Holes With Varying Angles of Inclination and Orientation
,”
J. Turbomach.
,
123
(
4
), pp.
781
787
.
27.
Reichert
,
A. W.
,
Brillert
,
D.
, and
Simon
,
H.
,
1997
, “
Loss Prediction for Rotating Passages in Secondary Air Systems
,”
ASME
Paper No. 97-GT-215
.
28.
Da Soghe
,
R.
, and
Andreini
,
A.
,
2013
, “
Numerical Characterization of Pressure Drop Across the Manifold of Turbine Casing Cooling System
,”
J. Turbomach.
,
135
(
3
), p.
031017
.
29.
Mazzei
,
L.
,
Winchler
,
L.
, and
Andreini
,
A.
,
2017
, “
Development of a Numerical Correlation for the Discharge Coefficient of Round Inclined Holes With Low Crossflow
,”
Comput. Fluids
,
152
, pp.
182
192
.
30.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
, 2nd ed., CRC Press, Boca Raton, FL.
31.
Andrei
,
L.
,
Andreini
,
A.
,
Bianchini
,
C.
, and
Facchini
,
B.
,
2013
, “
Numerical Benchmark of Nonconventional RANS Turbulence Models for Film and Effusion Cooling
,”
ASME J. Turbomach.
,
135
(
4
), p.
041026
.
32.
Seller
,
J. P.
,
1963
, “
Gaseous Film Cooling With Multiple Injection Stations
,”
AIAA J.
,
1
(
9
), pp.
2154
2156
.
You do not currently have access to this content.