The present study aims at characterizing the flow field and heat transfer for a schematic but realistic vane cooling scheme. Experimentally, both velocity and heat transfer measurements are conducted to provide a detailed database of the investigated configuration. From a numerical point of view, the configuration is investigated using isotropic and anisotropic Reynolds-averaged Navier–Stokes (RANS) turbulence models. A hybrid RANS/large eddy simulation (LES) technique is also considered to evaluate potential unsteady effects. Both experimental and numerical results show a very complex three-dimensional (3D) flow. Air is not evenly distributed between different injections, mainly because of a large recirculation flow. Due to the strong flow deviation at the hole inlet, the velocity distribution and the turbulence characteristics at the hole exit are far from fully developed profiles. The comparison between particle image velocimetry (PIV) measurements and numerical results shows a reasonable agreement. However, coming to heat transfer, all RANS models exhibit a major overestimation compared to IR thermography measurements. The Billard–Laurence model does not bring any improvement compared to a classical k–ω shear stress transport (SST) model. The hybrid RANS/LES simulation provides the best heat transfer estimation, exhibiting potential unsteady effects ignored by RANS models. Those conclusions are different from the ones usually obtained for a single fully developed impinging jet.

References

1.
Martin
,
H.
,
1977
, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
,
13
, pp.
1
60
.
2.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.
3.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.
4.
Zuckerman
,
N.
, and
Lior
,
N.
,
2006
, “
Jet Impingement Heat Transfer: Physics, Correlations, and Numerical Modeling
,”
Adv. Heat Transfer
,
39
, pp.
565
631
.
5.
Goldstein
,
R.
, and
Behbahani
,
A.
,
1982
, “
Impingement of a Circular Jet With and Without Cross Flow
,”
Int. J. Heat Mass Transfer
,
25
(9), pp.
1377
1382
.
6.
Roux
,
S.
,
Fénot
,
M.
,
Lalizel
,
G.
,
Brizzi
,
L.
, and
Dorignac
,
E.
,
2011
, “
Experimental Investigation of the Flow and Heat Transfer of an Impinging Jet Under Acoustic Excitation
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3277
3290
.
7.
Baughn
,
J.
, and
Shimizu
,
S.
,
1989
, “
Heat Transfer Measurements From a Surface With Uniform Heat Flux and an Impinging Jet
,”
ASME J. Heat Transfer
,
111
(
4
), pp.
1096
1098
.
8.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement—A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.
9.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
337
342
.
10.
Fenot
,
M.
, and
Dorignac
,
E.
,
2016
, “
Heat Transfer and Flow Structure of an Impinging Jet With Upstream Flow
,”
Int. J. Therm. Sci.
,
109
, pp.
386
400
.
11.
Liu
,
T.
, and
Sullivan
,
J. P.
,
1996
, “
Heat Transfer and Flow Structures in an Excited Circular Impinging Jet
,”
Int. J. Heat Mass Transfer
,
39
(
17
), pp.
3695
3706
.
12.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1999
,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley-Interscience
,
Chichester, UK
.
13.
Refloch
,
A.
,
Courbet
,
B.
,
Murrone
,
A.
,
Villedieu
,
P.
,
Laurent
,
C.
,
Gilbank
,
P.
,
Troyes
,
J.
,
Tessé
,
L.
,
Chaineray
,
G.
,
Dargaud
,
J. B.
,
Quémerais
,
E.
, and
Vuillot
,
F.
,
2011
, “
CEDRE Software
,”
J. Aerosp. Lab
, (
2
), pp. 1–10.http://www.aerospacelab-journal.org/sites/www.aerospacelab-journal.org/files/AL2-11_0.pdf
14.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
15.
Billard
,
F.
, and
Laurence
,
D.
,
2012
, “
A Robust k–ε, v2/k Elliptic Blending Turbulence Model Applied to Near-Wall, Separated and Buoyant Flows
,”
Int. J. Heat Fluid Flow
,
33
(
1
), pp.
45
58
.
16.
Durbin
,
P.
,
1991
, “
Near-Wall Closure Modelling Without Damping Functions
,”
Theor. Comput. Fluid Dyn.
,
3
(
1
), pp.
1
13
.https://link.springer.com/article/10.1007/BF00271513
17.
Benhia
,
M.
,
Parneix
,
S.
, and
Durbin
,
P. A.
,
1998
, “
Prediction of Heat Transfer in an Axisymmetric Turbulent Jet on a Flat Plate
,”
Int. J. Heat Mass Transfer
,
41
(12), pp.
1845
1855
.
18.
Vanpouille
,
D.
,
Aupoix
,
B.
, and
Laroche
,
E.
,
2015
, “
Development of an Explicit Algebraic Turbulence Model for Buoyant Flows—Part 2: Model Development and Validation
,”
Int. J. Heat Fluid Flow
,
53
, pp.
195
209
.
19.
Deck
,
S.
,
2005
, “
Zonal-Detached-Eddy Simulation of the Flow Around a High-Lift Configuration
,”
AIAA J.
,
43
(
11
), pp.
2372
2384
.
20.
Deck
,
S.
,
2012
, “
Recent Improvements Zonal Detached Eddy Simulation (ZDES) Formulation
,”
Theor. Comput. Fluid Dyn.
,
26
(
6
), pp.
523
550
.
21.
Spalart
,
P.
,
Jou
,
W.
,
Strelets
,
M.
, and
Allmaras
,
S.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
First International Conference on LES/DNS
, Ruston, LA, Aug. 4–8, pp. 137–147.https://www.tib.eu/en/search/id/BLCP%3ACN032430355/Comments-on-the-Feasibility-of-LES-for-Wings-and/
22.
Spalart
,
P.
,
Deck
,
S.
,
Shur
,
M.
,
Squires
,
K.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
, pp.
181
195
.
23.
Strelets
,
M.
,
2001
, “
Detached Eddy Simulation of Massively Separated Flows
,”
AIAA
Paper No. 2001-0879.
24.
Arroyo-Callejo
,
G.
,
Laroche
,
E.
,
Millan
,
P.
,
Leglaye
,
F.
, and
Chedevergne
,
F.
,
2016
, “
Numerical Investigation of Compound Angle Effusion Cooling Using Differential Reynolds Stress Model and Zonal Detached Eddy Simulation Approaches
,”
ASME J. Turbomach.
,
138
(
10
), p.
101001
.
You do not currently have access to this content.