A high speed 1–1/2 axial compressor stage is simulated in this paper using an unsteady Reynolds-averaged Navier–Stokes (URANS) solver for a full-annulus configuration to capture its nonsynchronous vibration (NSV) flow excitation with rigid blades. A third-order weighted essentially nonoscillatory scheme for the inviscid flux and a second-order central differencing for the viscous terms are used to resolve nonlinear unsteady fluid flows. A fully conservative rotor/stator sliding boundary condition (BC) is employed with multiple-processor capability for rotor/stator sliding interface that accurately captures unsteady wake propagation between the rotor and stator blades while conserving fluxes across the rotor/stator interfaces. The predicted dominant frequencies using the blade tip response signals are not harmonic to the engine order, which is the NSV excitation. The simulation is based on a rotor blade with a 1.1% tip-chord clearance. Comparison with the previous 1/7 annulus simulations show that the time-shifted phase-lag BCs used in the 1/7 annulus are accurate. For most of the blades, the NSV excitation frequency is 6.2% lower than the measurement in the rig test, although some blades displayed slightly different NSV excitation frequencies. The simulation confirms that the NSV is a full annulus phenomenon. The instability of the circumferential traveling vortices in the vicinity of the rotor tip due to the strong interaction of incoming flow is the main cause of the NSV excitation. This instability is present in all blades of the rotor annulus. For circumferentially averaged parameters like total pressure ratio, NSV is observed to have an effect on the radial profile, particularly at radial locations above 70% span. A design with a lower loading of the upper blade span and a higher loading of the midblade spans is recommended to mitigate or remove NSV.

References

1.
Baumgartner
,
M.
,
Kameier
,
F.
, and
Hourmouziadis
,
J.
,
1995
, “
Non-Engine Order Blade Vibration in a High Pressure Compressor
,” Twelfth International Symposium on Airbreathing Engines (
ISABE
), Melbourne, Australia, Sept. 10–15, pp.
10
15
.https://hal.archives-ouvertes.fr/hal-01353829/document
2.
Kielb
,
R.
,
Thomas
,
J.
,
Barter
,
P.
, and
Hall
,
K.
,
2003
, “Blade Excitation by Aerodynamic Instabilities: A Compressor Blade Study,”
ASME
Paper No. GT2003-38634.
3.
Marz
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating Instability
,”
ASME J. Turbomach.
,
124
(3), pp.
367
375
.
4.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2001
, “Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex,”
ASME J. Turbomach.
,
123
(3), pp.
453
463
.
5.
Thomassin
,
J.
,
Vo
,
H.
, and
Mureithi
,
N.
,
2009
, “
Blade Tip Clearance Flow and Compressor Nonsynchronous Vibrations: The Jet Core Feedback Theory as the Coupling Mechanism
,”
ASME J. Turbomach.
,
131
(1), p. 0
11013
.
6.
Thomassin
,
J.
,
Vo
,
H.
, and
Mureithi
,
N.
,
2011
, “
The Tip Clearance Flow Resonance Behind Axial Compressor Nonsynchronous Vibration
,”
ASME J. Turbomach.
,
133
(4), p.
041030
.
7.
Sanders
,
A.
,
2005
, “
Nonsynchronous Vibration (NSV) Due to a Flow-Induced Aerodynamic Instability in a Composite Fan Stator
,”
ASME J. Turbomach.
,
127
(2), pp.
412
421
.
8.
Vo
,
H. D.
,
2010
, “
Role of Tip Clearance Flow in Rotating Instabilities and Nonsynchronous Vibrations
,”
J. Propul. Power
,
26
(3), pp.
556
561
.
9.
Im
,
H. S.
, and
Zha
,
G. C.
,
2014
, “
Investigation of Flow Instability Mechanism Causing Compressor Rotor-Blade Nonsynchronous Vibration
,”
AIAA J.
,
52
(9), pp.
2019
2031
.
10.
Clark
,
S.
,
Kielb
,
R.
, and
Hall
,
K.
,
2012
, “Developing a Reduced-Order Model to Understand Nonsynchronous Vibration (NSV) in Turbomachinery,”
ASME
Paper No. GT2012-68145.
11.
Im
,
H. S.
, and
Zha
,
G. C.
,
2012
, “Simulation of Non-Synchronous Blade Vibration of an Axial Compressor Using a Fully Coupled Fluid/Structure Interaction,”
ASME
Paper No. GT2012-68150.
12.
Im
,
H. S.
, and
Zha
,
G. C.
,
2012
, “Effects of Rotor Tip Clearance on Non-Synchronous Blade Vibration for an Axial Compressor,”
ASME
Paper No. GT2012-68148.
13.
Gan
,
J. Y.
,
Im
,
H. S.
,
Espinal
,
D. A.
,
Lefebvre
,
A.
, and
Zha
,
G. C.
,
2014
, “Investigation of a Compressor Rotor Non-Synchronous Vibration With and Without Fluid-Structure Interaction,”
ASME
Paper No. GT2014-26478.
14.
Gan
,
J. Y.
,
Im
,
H. S.
, and
Zha
,
G. C.
,
2017
, “Numerical Examination of Lock-In Hypothesis of Non-Synchronous Vibration in an Axial Compressor,”
ASME
Paper No. GT2017-65244.
15.
Chen
,
J.
,
Hathaway
,
M.
, and
Herrick
,
G.
,
2008
, “
Prestall Behavior of a Transonic Axial Compressor Stage Via Time-Accurate Numerical Simulation
,”
ASME J. Turbomach.
,
130
(4), p. 041014.
16.
Hah
,
C.
,
Bergner
,
J.
, and
Schifer
,
H.
,
2006
, “Short Length Scale Rotating Stall Inception in a Transonic Axial Compressors: Criteria and Mechanisms,”
ASME
Paper No. GT2006-90045.
17.
Im
,
H. S.
,
Chen
,
X. Y.
, and
Zha
,
G. C.
,
2012
, “
Detached Eddy Simulation of Stall Inception for a Full Annulus Transonic Rotor
,”
J. Propul. Power
,
28
(
4
), pp.
782
798
.
18.
Khaleghi
,
H.
,
Boroomand
,
M.
,
Tousi
,
A. M.
, and
Teixeira
,
J. A.
,
2008
, “
Stall Inception in a Transonic Axial Fan
,”
J. Power Energy
,
222
(2), pp.
199
208
.
19.
Lin
,
F.
,
Zhang
,
J.
,
Chen
,
J.
, and
Nie
,
C.
,
2008
, “
Flow Structure of Short-Length-Scale Disturbance in an Axial-Flow Compressor
,”
J. Propul. Power
,
24
(6), pp.
1301
1308
.
20.
Gan
,
J. Y.
,
Im
,
H.-S.
, and
Zha
,
G. C.
,
2015
, “Simulation of Stall Inception of a High Speed Axial Compressor With Rotor-Stator Interaction,”
AIAA
Paper No. 2015-3932.
21.
Gan
,
J. Y.
,
Im
,
H.-S.
, and
Zha
,
G. C.
,
2016
, “Delayed Detached Eddy Simulation of Rotating Stall for a Full Annulus Transonic Axial Compressor Stage,”
ASME
Paper No. GT2016-57985.
22.
Espinal
,
D. A.
,
Im
,
H. S.
, and
Zha
,
G. C.
,
2014
, “Full-Annulus Simulation of Non-Synchronous Blade Vibration Excitation of an Axial Compressor,”
AIAA
Paper No. 2014-0790.
23.
Spalart
,
P. R.
,
Jou
,
W. H.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
Advances in DNS/LES, First AFOSR International Conference on DNS/LES
, Ruston, LA, Aug. 4–8, pp. 1–12.https://www.tib.eu/en/search/id/BLCP%3ACN032430355/Comments-on-the-Feasibility-of-LES-for-Wings-and/
24.
Spalart
,
P. R.
,
2009
, “
Detached Eddy Simulation
,”
Annu. Rev. Fluid Mech.
,
41
, pp.
181
202
.
25.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M.
, and
Squires
,
K. D.
,
2006
, “
A New Version of Detached Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
, pp.
181
195
.
26.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2008
, “
A Hybrid RANS-LES Approach With Delayed-DES and Wall-Modelled LES Capabilities
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1638
1649
.
27.
Zha
,
G. C.
,
Shen
,
Y. Q.
, and
Wang
,
B. Y.
,
2011
, “
An Improved Low Diffusion E-CUSP Upwind Scheme
,”
J. Comput. Fluids
,
48
(1), pp.
214
220
.
28.
Shen
,
Y. Q.
,
Zha
,
G. C.
, and
Wang
,
B. Y.
,
2009
, “
Improvement of Stability and Accuracy of Implicit WENO Scheme
,”
AIAA J.
,
47
(2), pp.
331
334
.
29.
Wang
,
B.
,
Hu
,
Z.
, and
Zha
,
G.
,
2008
, “
A General Sub-Domain Boundary Mapping Procedure for Structured Grid CFD Parallel Computation
,”
AIAA J. Aerosp. Comput. Inf. Commun.
,
5
(11), pp.
425
447
.
30.
Rai
,
M.
,
1989
, “
Three-Dimensional Navier–Stokes Simulations of Turbine Rotor-Stator Interaction—Part I: Methodology
,”
AIAA J. Propul. Power
,
5
(3), pp.
305
311
.
31.
Giles
,
M. B.
,
1990
, “
Stator/Rotor Interaction in a Transonic Turbine
,”
AIAA J. Propul. Power
,
6
(5), pp.
621
627
.
32.
He
,
L.
,
2000
, “
Three-Dimensional Unsteady Navier–Stokes Analysis of Stator-Rotor Interaction in Axial Flow Turbines
,”
Proc. Inst. Mech. Eng., Part A
,
214
(1), pp.
13
22
.
33.
Ruprecht
,
A.
,
Bauer
,
C.
,
Gentner
,
C.
, and
Lein
,
G.
,
1999
, “Parallel Computation of Stator-Rotor Interaction in an Axial Turbine,”
ASME PVP Conference, CFD Symposium
, Boston, MA.https://pdfs.semanticscholar.org/87f7/ae799d1d6c3ccfe32b9931bb238d449d4288.pdf
34.
Chen
,
J. P.
, and
Barter
,
J. W.
,
1998
, “Comparison of Time-Accurate Calculations for the Unsteady Interaction in Turbomachinery Stage,”
AIAA
Paper No. 98-3292.
35.
Im
,
H. S.
,
Chen
,
X. Y.
, and
Zha
,
G. C.
,
2011
, “Simulation of 3D Multistage Axial Compressor Using a Fully Conservative Sliding Boundary Condition,”
ASME
Paper No. IMECE2011-62049.
You do not currently have access to this content.