The aerodynamic behavior of turbine center frame (TCF) ducts under the presence of high-pressure turbine (HPT) purge flows was experimentally investigated in this two-part paper. While the first part of the paper demonstrated the impact of varying the purge flow rates (PFR) on the loss behavior of two different TCF designs, the second part concentrates on the influence of individual hub and tip purge flows on the main flow evolution and loss generation mechanisms through the TCF ducts. Therefore, measurements were conducted at six different operating conditions in a one and a half stage turbine test setup, featuring four individual purge flows injected through the hub and tip, forward and aft cavities of the HPT rotor. The outcomes of this first-time assessment indicate that a HPT purge flow reduction generally benefits TCF performance. Decreasing one of the rotor case PFRs leads to an improved duct pressure loss. The purge flows from the rotor aft hub and tip cavities are demonstrated to play a particularly important role for improving the duct aerodynamic behavior. In contrast, the forward rotor hub purge flow actually stabilizes the flow in the TCF duct and reducing this purge flow can penalize TCF performance. These particular HPT/TCF interactions should be taken into account whenever high-pressure turbine purge flow reductions are pursued.

References

1.
Paniagua
,
G.
,
Dénos
,
R.
, and., and
Almeida
,
S.
,
2004
, “
Effect of the Hub Endwall Cavity Flow on the Flow-Field of a Transonic High-Pressure Turbine
,”
ASME J. Turbomach.
,
126
(
4
), pp.
578
586
.
2.
Schuepbach
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Germain
,
T.
,
Raab
,
I.
, and
Gier
,
J.
,
2010
, “
Effects of Suction and Injection Purge-Flow on the Secondary Flow Structures of a High-Work Turbine
,”
ASME J. Turbomach.
,
132
(
2
), p.
021021
.
3.
Jenny
,
P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
,
Brettschneider
,
M.
,
Gier
,
J.
, and
Engel
,
K.
,
2011
, “
Low-Pressure Turbine End Wall Design Optimisation and Experimental Verification in the Presence of Purge Flow
,” International Symposium on Air Breathing Engines, Gothenburg, Sweden, Sept. 12–16, ISABE Paper No.
1717
. https://www.research-collection.ethz.ch/handle/20.500.11850/44158
4.
Ong
,
J.
,
Miller
,
R. J.
, and
Uchida
,
S.
,
2012
, “
The Effect of Coolant Injection on the Endwall Flow of a High Pressure Turbine
,”
ASME J. Turbomach.
,
134
(
5
), p.
051003
.
5.
Regina
,
K.
,
Kalfas
,
A. I.
, and
Abhari
,
R. S.
,
2015
, “
Experimental Investigation of Purge Flow Effects on a High Pressure Turbine Stage
,”
ASME J. Turbomach.
,
137
(
4
), p.
041006
.
6.
Scobie
,
J. A.
,
Hualca
,
F. P.
,
Sangan
,
C. M.
, and
Lock
,
G. D.
,
2017
, “
Egress Interaction Through Turbine Rim Seals
,”
ASME
Paper No. GT2017-64632.
7.
Schuler
,
P.
,
Kurz
,
W.
,
Dullenkopf
,
K.
, and
Bauer
,
H.-J.
,
2010
, “
The Influence of Different Rim Seal Geometries on Hot-Gas Ingestion and Total Pressure Loss in a Low-Pressure Turbine
,”
ASME
Paper No. GT2010-22205.
8.
Schrewe
,
S.
,
Werschnik
,
H.
, and
Schiffer
,
H. P.
,
2013
, “
Experimental Analysis of the Interaction Between Rim Seal and Main Annulus Flow in a Low Pressure Two Stage Axial Turbine
,”
ASME J. Turbomach.
,
135
(
5
), p.
051003
.
9.
Cui
,
J.
, and
Tucker
,
P.
,
2016
, “
Numerical Study of Purge and Secondary Flows in a Low-Pressure Turbine
,”
ASME J. Turbomach.
,
139
(
2
), p.
021007
.
10.
Zlatinov
,
M. B.
,
Tan
,
C. S.
,
Montgomery
,
M.
,
Islam
,
T.
, and
Harris
,
M.
,
2012
, “
Turbine Hub and Shroud Sealing Flow Loss Mechanisms
,”
ASME J. Turbomach.
,
134
(
6
), p.
061027
.
11.
Tang
,
E.
,
Philit
,
M.
,
Leroy
,
G.
,
Trebinjac
,
I.
, and
Boum
,
G. N.
,
2016
, “
Influence of a Shroud Axisymmetric Slot Injection on a High Pressure Turbine Flow
,”
ASME
Paper No. GT2016-56608.
12.
Göttlich
,
E.
,
2011
, “
Research on the Aerodynamics of Intermediate Turbine Diffusers
,”
Prog. Aerosp. Sci.
,
47
(
4
), pp.
249
279
.
13.
Zerobin
,
S.
,
Peters
,
A.
,
Bauinger
,
S.
,
Ramesh
,
A.
,
Steiner
,
M.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2018
, “
Aerodynamic Performance of Turbine Center Frames With Purge Flows—Part I: The Influence of Turbine Purge Flows Rates
,”
ASME J. Turbomach.
, accepted.
14.
Steiner
,
M.
,
Zerobin
,
S.
,
Bauinger
,
S.
,
Heitmeir
,
F.
, and
Göttlich
,
E.
,
2017
, “
Development and Commissioning of a Purge Flow System in a Two Spool Test Facility
,” International Symposium on Air Breathing Engines, Stockholm, Sweden, Apr. 3–7, ETC Paper No.
ETC2017-115
. http://www.euroturbo.eu/paper/ETC2017-115.pdf
15.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
,
2006
, “
The Effect of Stator-Rotor Hub Sealing Flow on the Mainstream Aerodynamics of a Turbine
,”
ASME
Paper No. GT2006-90838.
16.
Dahlqvist
,
J.
, and
Fridh
,
J.
,
2016
, “
Experimental Investigation of Turbine Stage Flow Field and Performance at Varying Cavity Purge Rates and Operating Speeds
,”
ASME
Paper No. GT2016-57735.
17.
Florea
,
R.
,
Bertuccioli
,
L.
, and
Tillman
,
G.
,
2007
, “
Flow-Control-Enabled Aggressive Turbine Transition Ducts and Engine System Analysis
,”
AIAA J. Propul. Power
,
23
(
4
), pp.
797
803
.
You do not currently have access to this content.