Abstract

Transpiration cooling represents the pinnacle of turbine cooling and is characterized by an intrinsic material porosity which achieves high internal convective cooling, and full coverage cooling films on the external surface subjected to the hot gases. Quasi-transpiration systems, such as the double-wall effusion system discussed here, attempt to replicate the cooling effect of transpiration systems. The double-wall system is characterized by a large internal wetted area providing high internal convective cooling performance, with a highly porous external wall allowing the formation of a protective film over the external surface. This paper presents a low-order thermal model of a double-wall system designed to rapidly ascertain cooling performance based solely on the geometry, solid thermal conductivity, and approximate surface heat transfer coefficients. The performance of the model is initially validated using experimental data with heat transfer coefficients for the low-order model obtained from fully conjugate computational fluid dynamics (CFD) simulations. Following this, a more controlled CFD study is undertaken with both fully conjugate and fluid-only simulations performed on several double-wall geometries to ascertain both overall effectiveness and film effectiveness data. Data from these simulations are used as inputs to the low-order thermal model developed and the results compared. The low-order model successfully captures both the trends and absolute cooling effectiveness achieved by the various double-wall geometries. The model therefore provides an extremely powerful tool in which the cooling performance of double-wall geometries can be near instantaneously predicted during the initial design stage, potentially allowing geometry optimization to rapidly occur prior to more in-depth, costly, and time-consuming analyses of the systems being performed. This potential benefit is demonstrated via the implementation of the model with input boundary conditions obtained using empirical correlations.

References

1.
Moustapha
,
H.
,
Zelesky
,
M. F.
,
Baines
,
N. C.
, and
Japikse
,
D.
,
2003
,
Axial and Radial Turbines
,
Concepts NREC
,
White River Junction, VT
.
2.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2020
, “
Experimental and Computational Methods for the Evaluation of Double-Wall, Effusion Cooling Systems
,”
ASME J. Turbomach.
,
142
(
11
), p.
111003
.
3.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
Apr. 2019
, “
Development of a Steady-State Experimental Facility for the Analysis of Double-Wall Effusion Cooling Geometries
,”
ASME J. Turbomach.
,
141
(
4
), p.
041008
.
4.
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Rawlinson
,
A. J.
,
2017
, “
An Integrated Conjugate Computational Approach for Evaluating the Aerothermal and Thermomechanical Performance of Double-Wall Effusion Cooled Systems
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, p.
V05BT22A015
.
5.
Ngetich
,
G. C.
,
Ireland
,
P. T.
,
Murray
,
A. V.
, and
Romero
,
E.
,
2019
, “
A 3D Conjugate Approach for Analysing a Double-Walled Effusion-Cooled Turbine Blade
,”
ASME J. Turbomach.
,
141
(
1
), p.
011002
.
6.
Ngetich
,
G. C.
,
Ireland
,
P. T.
, and
Romero
,
E.
,
2019
, “
Study of Film Cooling Effectiveness on a Double-Walled Effusion-Cooled Turbine Blade in a High-Speed Flow Using Pressure Sensitive Paint
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 5B: Heat Transfer
,
Phoenix, AZ
,
June 17–21
, p.
V05BT19A008
.
7.
Hong
,
S. K.
,
Rhee
,
D.-H.
, and
Cho
,
H. H.
,
2007
, “
Effects of Fin Shapes and Arrangements on Heat Transfer for Impingement∕Effusion Cooling With Crossflow
,”
ASME J. Heat Transfer
,
129
(
12
), pp.
1697–1707
.
8.
Sweeney
,
P. C.
, and
Rhodes
,
J. F.
,
1999
, “
An Infrared Technique for Evaluating Turbine Airfoil Cooling Designs
,”
ASME J. Turbomach.
,
122
(
1
), pp.
170
177
.
9.
Nakamata
,
C.
,
Okita
,
Y.
,
Matsuno
,
S.
,
Mimura
,
F.
,
Matsushita
,
M.
,
Yamane
,
T.
,
Fukuyama
,
Y.
, and
Yoshida
,
T.
,
2005
, “
Spatial Arrangement Dependence of Cooling Performance of an Integrated Impingement and Pin Fin Cooling Configuration
,”
Volume 3: Turbo Expo 2005, Parts A and B
,
Reno, NV
,
June 6–9
, pp.
385
395
.
10.
Chua
,
K. H.
,
Carrotte
,
J.
,
Denman
,
P.
, and
Spencer
,
A.
,
2004
, “
Experimental Characterization of the Coolant Film Issuing From a Cooling Tile
,”
Volume 1: Turbo Expo 2004
,
Vienna, Austria
,
June 14–17
, pp.
271
281
.
11.
Murray
,
A. V.
,
Ireland
,
P. T.
,
Wong
,
T. H.
,
Tang
,
S. W.
, and
Rawlinson
,
A. J.
,
2018
, “
High Resolution Experimental and Computational Methods for Modelling Multiple Row Effusion Cooling Performance
,”
Int. J. Turbomach. Propuls. Power
,
3
(
1
), p.
4
.
12.
Elmukashfi
,
E. M. A.
,
Murray
,
A. V.
,
Ireland
,
P. T.
, and
Cocks
,
A. C. F.
,
2020
, “
Analysis of the Thermomechanical Stresses in Double-Wall Effusion Cooled Systems
,”
ASME J. Turbomach.
,
142
(
5
), p.
051002
.
13.
Denman
,
P. A.
,
Barker
,
A. G.
,
Jayatunga
,
C. W.
, and
McGuirk
,
J. J.
,
2003
, “
Modelling and Measurements of Combustor Cooling Tile Flows
,”
Volume 2: Turbo Expo 2003
,
Atlanta, GA
,
June 16–19
, pp.
585
592
.
14.
Luff
,
J. K.
, and
McGuirk
,
J. J.
,
2001
, “
Numerical Prediction of Combustor Heatshield Flow and Heat Transfer With Sub-Grid-Scale Modelling of Pedestals
,” ASME Paper No. 2001-GT, p.
0144
.
15.
Eckert
,
E. R. G.
, and
Cho
,
H. H.
,
1994
, “
Transition From Transpiration to Film Cooling
,”
Int. J. Heat Mass Transfer
,
37
(Suppl. 1)
, pp.
3
8
.
16.
Selzer
,
M.
, and
Schweikert
,
S.
, “
Transpiration Cooling Models Applied to Rocket Combustion Chambers
,” p.
13
.
17.
Bunker
,
R. S.
,
2006
, “Cooling Design Analysis”
The Gas Turbine Handbook
,
US Department of Energy NETL
,
Morgantown, WV
.
18.
Town
,
J.
,
Straub
,
D.
,
Black
,
J.
,
Thole
,
K. A.
, and
Shih
,
T. I.-P.
,
2018
, “
State-of-the-Art Cooling Technology for a Turbine Rotor Blade
,”
ASME J. Turbomach.
,
140
(
7
), p.
071007
.
19.
Zuckerman
,
N.
, and
Lior
,
N.
,
2005
, “
Impingement Heat Transfer: Correlations and Numerical Modeling
,”
ASME J. Heat Transfer
,
127
(
5
), pp.
544
552
.
20.
Goldstein
,
R. J.
, and
Behbahani
,
A. I.
,
1982
, “
Impingement of a Circular Jet With and Without Cross Flow
,”
Int. J. Heat Mass Transfer
,
25
(
9
), pp.
1377
1382
.
21.
Goldstein
,
R. J.
,
Behbahani
,
A. I.
, and
Heppelmann
,
K. K.
,
1986
, “
Streamwise Distribution of the Recovery Factor and the Local Heat Transfer Coefficient to an Impinging Circular Air Jet
,”
Int. J. Heat Mass Transfer
,
29
(
8
), pp.
1227
1235
.
22.
Ireland
,
P. T.
,
1987
, “
Internal Cooling of Turbine Blades
,”
Doctor of Philosophy (D.Phil.) thesis
,
University of Oxford
,
Oxford, UK
.
23.
Gillespie
,
D. R. H.
,
1996
, “
Intricate Internal Cooling Systems for Gas Turbine Blading
,”
Doctor of Philosophy (DPhil) thesis
,
University of Oxford, Osney Thermo-Fluids Laboratory
,
Oxford, UK
..
24.
Ammari
,
H. D.
,
Hay
,
N.
, and
Lampard
,
D.
,
2020
, “
The Effect of Density Ratio on the Heat Transfer Coefficient From a Film Cooled Flat Plate
,”
ASME J. Turbomach.
,
112
(
3
), pp.
444
450
.
25.
Bradley
,
A.
,
2009
,
Prediction of Vane Film Cooling in Gas Turbines: Correlations and Parameters
,
Linkoping University, Institute of Technology
,
Linkoping, Sweden
.
26.
Howatson
,
A. M.
,
Lund
,
P. G.
, and
Todd
,
J. D.
,
2009
,
Engineering Tables and Data
, 3rd ed.,
Department of Engineering Science, University of Oxford
,
Oxford, UK
.
27.
Arora
,
S. C.
, and
Abdel-Messeh
,
W.
,
1985
, “
Pressure Drop and Heat Transfer Characteristics of Circular and Oblong Low Aspect Ratio Pin Fins
,”
AGARD Conference Proceedings No. 390
,
Bergen, Norway
,
September
, pp.
4.1
4.15
.
28.
Žukauskas
,
A.
,
1972
, “
Heat Transfer From Tubes in Crossflow
,”
Adv. Heat Transfer.
,
8
, pp.
93
160
.
You do not currently have access to this content.