Abstract

To survive in a complex environment, nature has produced efficient and versatile resource-rich structures. One of the novel drag reduction designs comes from the efficient movement of sharks through microscope riblets aligned along the flow direction. In this paper, the effectiveness of sharkskin-inspired riblets in reducing the aerodynamic loss of compressor cascade flow was investigated using the high-fidelity numerical simulation method. Two key normalized parameters, i.e., s+ and h+, were selected to parameterize various riblet designs, and the corresponding relative change in cascade performance was first investigated based on the unsteady Reynolds-averaged Navier–Stokes (uRANS) simulations with/without a transition model. Then, the large eddy simulations in conjunction with the wall-adapted local eddy viscosity model were conducted to investigate the cascade flow with the selected riblet design cases. By comparing the flow resistance, transition positions, vortex formations, and turbulence fluctuations of the boundary flow, the flow control mechanisms of the riblets were finally studied. Simulation results show that compared with the prototype case, the total pressure loss can be reduced by up to 20.5% in the fully turbulent environment. This is because the spanwise fluctuation of the turbulent vortices is impeded inside the boundary layer, and the turbulent vortices are lifted above the riblet tip. Low-speed streaks inside the riblet valleys generate relatively low shear stresses, while the high-shear stresses occur only at the riblet tips. However, when considering the transition from laminar to turbulent boundary flow, the aerodynamic performance of compressor cascade strongly depends on the riblet position relative to the transition region on cascade suction side (SS). The total pressure loss can only be reduced by up to 8.1%, and even most riblet designs degrade the cascade performance. The major reason is that the riblets are located upstream of the transition zone, especially at the small incidence angles. Due to the installation of riblets, the contact area between the laminar flow and the wall surface is increased, and the downstream laminar-to-turbulent transition is promoted.

References

1.
Koch
,
C. C.
, and
Smith
,
L. H.
,
1976
, “
Loss Sources and Magnitudes in Axial-Flow Compressors
,”
J. Eng. Power
,
98
(
3
), pp.
411
424
. 10.1115/1.3446202
2.
Wisler
,
D. C.
,
1985
, “
Loss Reduction in Axial-Flow Compressors Through Low-Speed Model Testing
,”
ASME J. Eng. Gas Turbines Power
,
107
(
2
), pp.
354
363
. 10.1115/1.3239730
3.
Hergt
,
A.
,
Meyer
,
R.
, and
Engel
,
K.
,
2013
, “
Effects of Vortex Generator Application on the Performance of a Compressor Cascade
,”
ASME J. Turbomach.
,
135
(
2
), p.
021026
. 10.1115/1.4006605
4.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2008
, “
Control of Three-Dimensional Separations in Axial Compressors by Tailored Boundary Layer Suction
,”
ASME J. Turbomach.
,
130
(
1
), p.
011004
. 10.1115/1.2749294
5.
Zheng
,
X.
, and
Li
,
Z.
,
2017
, “
Blade-End Treatment to Improve the Performance of Axial Compressors: An Overview
,”
Prog. Aerosp. Sci.
,
88
, pp.
1
14
. 10.1016/j.paerosci.2016.09.001
6.
Bechert
,
D. W.
,
Bruse
,
M.
,
Hage
,
W. V.
,
Van der Hoeven
,
J. T.
, and
Hoppe
,
G.
,
1997
, “
Experiments on Drag-Reducing Surfaces and Their Optimization With an Adjustable Geometry
,”
J. Fluid Mech.
,
338
, pp.
59
87
. 10.1017/S0022112096004673
7.
Bechert
,
D. W.
,
Bruse
,
M.
, and
Hage
,
W.
,
2000
, “
Experiments With Three-Dimensional Riblets as an Idealized Model of Shark Skin
,”
Exp. Fluids
,
28
(
5
), pp.
403
412
. 10.1007/s003480050400
8.
Lee
,
S. J.
, and
Lee
,
S. H.
,
2001
, “
Flow Field Analysis of a Turbulent Boundary Layer Over a Riblet Surface
,”
Exp. Fluids
,
30
(
2
), pp.
153
166
. 10.1007/s003480000150
9.
Bechert
,
D. W.
, and
Hage
,
W.
,
2006
, “Drag Reduction With Riblets in Nature and Engineering,”
Flow Phenomena in Nature, Volume 2: Inspiration, Learning and Application
,
R. J.
Liebe
, ed.,
WIT Press
,
Southampton, UK
, pp.
457
467
.
10.
Jung
,
Y. C.
, and
Bhushan
,
B.
,
2009
, “
Biomimetic Structures for Fluid Drag Reduction in Laminar and Turbulent Flows
,”
J. Phys.: Condens. Matter
,
22
(
3
), p.
035104
. 10.1088/0953-8984/22/3/035104
11.
Bixler
,
G. D.
, and
Bhushan
,
B.
,
2012
, “
Biofouling: Lessons From Nature
,”
Philos. Trans. R. Soc. A
,
370
(
1967
), pp.
2381
2417
. 10.1098/rsta.2011.0502
12.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1993
, “
Direct Numerical Simulation of Turbulent Flow Over Riblets
,”
J. Fluid Mech.
,
255
(
1
), pp.
503
539
. 10.1017/S0022112093002575
13.
Chu
,
D. C.
, and
Karniadakis
,
G. E.
,
1993
, “
A Direct Numerical Simulation of Laminar and Turbulent Flow Over Riblet-Mounted Surfaces
,”
J. Fluid Mech.
,
250
, pp.
1
42
. 10.1017/S0022112093001363
14.
Goldstein
,
D.
,
Handler
,
R.
, and
Sirovich
,
L.
,
1995
, “
Direct Numerical Simulation of Turbulent Flow Over a Modelled Riblet Covered Surface
,”
J. Fluid Mech.
,
302
, pp.
333
376
. 10.1017/S0022112095004125
15.
Martin
,
S.
, and
Bhushan
,
B.
,
2014
, “
Fluid Flow Analysis of a Shark-Inspired Microstructure
,”
J. Fluid Mech.
,
756
, pp.
5
29
. 10.1017/jfm.2014.447
16.
Krieger
,
V.
,
Perić
,
R.
,
Jovanović
,
J.
,
Lienhart
,
H.
, and
Delgado
,
A.
,
2018
, “
Toward Design of the Anti-Turbulence Surface Exhibiting Maximum Drag Reduction Effect
,”
J. Fluid Mech.
,
850
, pp.
262
303
. 10.1017/jfm.2018.423
17.
Jin
,
Y.
, and
Herwig
,
H.
,
2014
, “
Turbulent Flow and Heat Transfer in Channels With Shark Skin Surfaces: Entropy Generation and Its Physical Significance
,”
Int. J. Heat Mass Transfer
,
70
, pp.
10
22
. 10.1016/j.ijheatmasstransfer.2013.10.063
18.
Krieger
,
K.
,
2004
, “
Do Pool Sharks Swim Faster?
,”
Science
,
305
(
5684
), pp.
636
638
. 10.1126/science.305.5684.636
19.
Fang
,
C.
,
Yan-Ping
,
T.
, and
Mao-Zhang
,
C.
,
1990
, “
An Experimental Investigation of Loss Reduction With Riblets on Cascade Blade Surfaces and Isolated Airfoils
,”
ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition
,
Brussels
,
Jun. 11–14
, p.
V001T01A060
,
Paper ID: 90-GT-207
.
20.
Boese
,
M.
, and
Fottner
,
L.
,
2002
, “
Effects of Riblets on the Loss Behavior of a Highly Loaded Compressor Cascade
,”
ASME Turbo Expo 2002: Power for Land, Sea, and Air
,
Amsterdam
,
Jun. 3–6
, pp.
743
750
,
Paper ID: GT2002-30438
.
21.
Oehlert
,
K.
,
Seume
,
J. R.
,
Siegel
,
F.
,
Ostendorf
,
A.
,
Wang
,
B.
,
Denkena
,
B.
,
Vynnyk
,
T.
,
Reithmeier
,
E.
,
Hage
,
W.
,
Knobloch
,
K.
, and
Meyer
,
R.
,
2007
, “
Exploratory Experiments on Machined Riblets for 2-D Compressor Blades
,”
ASME 2007 International Mechanical Engineering Congress and Exposition
,
Seattle, WA
,
Nov. 11–15
, pp.
25
39
,
Paper ID: IMECE2007-43457
.
22.
Lietmeyer
,
C.
,
Oehlert
,
K.
, and
Seume
,
J. R.
,
2013
, “
Optimal Application of Riblets on Compressor Blades and Their Contamination Behavior
,”
ASME J. Turbomach.
,
135
(
1
), p.
011036
. 10.1115/1.4006518
23.
Kaakkunen
,
J. J.
,
Tiainen
,
J.
,
Jaatinen-Värri
,
A.
,
Grönman
,
A.
, and
Lohtander
,
M.
,
2018
, “
Nanosecond Laser Ablation of the Trapezoidal Structures for Turbomachinery Applications
,”
Procedia Manuf.
,
25
, pp.
435
442
. 10.1016/j.promfg.2018.06.114
24.
Koepplin
,
V.
,
Herbst
,
F.
, and
Seume
,
J. R.
,
2017
, “
Correlation-Based Riblet Model for Turbomachinery Applications
,”
ASME J. Turbomach.
,
139
(
7
), p.
071006
. 10.1115/1.4035605
25.
Hergt
,
A.
,
Hage
,
W.
,
Grund
,
S.
,
Steinert
,
W.
,
Terhorst
,
M.
,
Schongen
,
F.
, and
Wilke
,
Y.
,
2015
, “
Riblet Application in Compressors: Toward Efficient Blade Design
,”
ASME J. Turbomach.
,
137
(
11
), p.
111006
. 10.1115/1.4031090
26.
Nagao
,
S.
, and
Breugelmans
,
F. A.
,
1999
, “
TS-25 Investigation of Riblets in a CDB, DCA and 65-S Compressor Cascade
,”
International Gas Turbine Congress
,
Kobe
,
Nov. 14–19
,
pp.
445
452
.
27.
Ma
,
W.
,
2012
, “
Experimental Investigation of Corner Stall in a Linear Compressor Cascade
,”
Ph.D. thesis
,
Ecole Centrale de Lyon
,
Écully
.
28.
Tabor
,
G. R.
, and
Baba-Ahmadi
,
M. H.
,
2010
, “
Inlet Conditions for Large Eddy Simulation: A Review
,”
Comput. Fluids
,
39
(
4
), pp.
553
567
. 10.1016/j.compfluid.2009.10.007
29.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
. 10.1023/A:1009995426001
30.
Chapman
,
D. R.
,
1979
, “
Computational Aerodynamics Development and Outlook
,”
AIAA J.
,
17
(
12
), pp.
1293
1313
. 10.2514/3.61311
31.
Galbraith
,
R. A.
, and
Coton
,
F. N.
,
1990
, “Two-Dimensional, Incompressible Aerofoil Design and Analysis,”
Computational Methods in Viscous Aerodynamics
,
T. K. S.
Murthy
, and
C. A.
Brebbia
, eds.,
Computational Mechanics Publications
,
Ashurst Lodge, Southampton
, pp.
331
367
.
32.
Popov
,
A. V.
,
Botez
,
R. M.
, and
Labib
,
M.
,
2008
, “
Transition Point Detection From the Surface Pressure Distribution for Controller Design
,”
J. Aircr.
,
45
(
1
), pp.
23
28
. 10.2514/1.31488
33.
Menter
,
F. R.
,
Langtry
,
R. B.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation
,”
ASME J. Turbomach.
,
128
(
3
), pp.
413
422
. 10.1115/1.2184352
34.
Langtry
,
R. B.
,
Menter
,
F. R.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2006
, “
A Correlation-Based Transition Model Using Local Variables—Part II: Test Cases and Industrial Applications
,”
ASME J. Turbomach.
,
128
(
3
), pp.
423
434
. 10.1115/1.2184353
35.
Walsh
,
M. J.
,
1980
, “
Drag Characteristics of V-Groove and Transverse Curvature Riblets
,”
NASA Technical Report ID: 19810042106
.
36.
Dean
,
B.
, and
Bhushan
,
B.
,
2010
, “
Shark-Skin Surfaces for Fluid-Drag Reduction in Turbulent Flow: A Review
,”
Philos. Trans. R. Soc. A
,
368
(
1929
), pp.
4775
4806
. 10.1098/rsta.2010.0201
You do not currently have access to this content.