Abstract

The influence of pulsed suction (PS) on flow separation and aerodynamic performance in a highly loaded compressor cascade is experimentally studied herein. The excitation frequency is investigated as it determines the effectiveness of PS in flow control. Low suction flowrates are examined to analyze the potential of PS in providing a satisfactory cascade performance. For comparison, the corresponding parameters of steady continuous suction (SCS) are studied as well. Oil-flow visualizations and steady and unsteady pressure data are used to characterize the control effects of SCS and PS. The experimental results validate the efficacy of PS in controlling flow separation, even at a reduced suction flowrate of 0.1%. It suppresses passage vortex (PV), improving aerodynamic performance. PS provides a better control effect than SCS at different excitation parameters, which can be attributed to twofold main reasons: first, at the same suction flowrate, PS has a larger suction momentum than SCS during the suction phase, resulting in a stronger suction force and having a more profound effect on the flow characteristics; and second, owing to the introduction of pulsed excitation to the suction, PS creates additional vortex structures that energize the boundary layer by transporting high momentum freestream fluid near the wall. PS is also effective at a higher incidence angle, but its control effect is reduced.

References

1.
Liu
,
Y.
,
Yan
,
H.
,
Lu
,
L.
, and
Li
,
Q.
,
2017
, “
Investigation of Vortical Structures and Turbulence Characteristics in Corner Separation in a Linear Compressor Cascade Using DDES
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021107
. 10.1115/1.4034871
2.
Dickens
,
T.
, and
Ivor
,
D.
,
2011
, “
The Design of Highly Loaded Axial Compressors
,”
ASME J. Turbomach.
,
133
(
3
), p.
031007
. 10.1115/1.4001226
3.
Lieblein
,
S.
,
Schwenk
,
F.
, and
Broderick
,
R.
,
1953
, “
Diffusion Factor for Estimating Losses and Limiting Blade Loadings in Axial-Flow-Compressor Blade Elements
,”
NACA RM E53D01
.
4.
Wennerstrom
,
A. J.
,
1990
, “
Highly Loaded Axial Flow Compressors: History and Current Developments
,”
ASME J. Turbomach.
,
112
(
4
), pp.
567
579
. 10.1115/1.2927695
5.
Tang
,
Y.
,
Liu
,
Y.
, and
Lu
,
L.
,
2019
, “
Evaluation of Compressor Blading With Blade End Slots and Full-Span Slots in a Highly Loaded Compressor Cascade
,”
ASME J. Turbomach.
,
141
(
12
), p.
121002
. 10.1115/1.4044693
6.
Evans
,
S.
,
Coull
,
J.
,
Haneef
,
I.
, and
Hodson
,
H.
,
2012
, “
Minimizing the Loss Produced by a Turbulent Separation Using Vortex Generator Jets
,”
AIAA J.
,
50
(
4
), pp.
778
787
. 10.2514/1.J050790
7.
Hecklau
,
M.
,
Wiederhold
,
O.
,
Zander
,
V.
,
King
,
R.
, and
Nitsche
,
W.
,
2011
, “
Active Separation Control With Pulsed Jets in a Critically Loaded Compressor Cascade
,”
AIAA J.
,
49
(
8
), pp.
1729
1739
. 10.2514/1.J050931
8.
Zhang
,
H.
,
Chen
,
S.
,
Gong
,
Y.
, and
Wang
,
S.
,
2019
, “
A Comparison of Different Unsteady Flow Control Techniques in a Highly Loaded Compressor Cascade
,”
PIME, Part G: J. Aerospace Eng.
,
233
(
6
), pp.
2051
2065
. 10.1177/0954410018770492
9.
Guo
,
S.
,
Lu
,
H.
,
Chen
,
F.
, and
Wu
,
C
,
2013
, “
Vortex Control and Aerodynamic Performance Improvement of a Highly Loaded Compressor Cascade Via Inlet Boundary Layer Suction
,”
Experiments Fluids
,
54
(
7
), p.
1570
. 10.1007/s00348-013-1570-y
10.
Pönick
,
S.
,
Kožulović
,
D.
,
Radespiel
,
R.
,
Becker
,
B.
, and
Gümmer
,
V.
,
2013
, “
Numerical and Experimental Investigations of a Compressor Cascade Flow With Secondary Air Removal
,”
ASME J. Turbomach.
,
135
(
2
), p.
021030
. 10.1115/1.4006570
11.
Zhang
,
L.
,
Wang
,
S.
, and
Zhu
,
W.
,
2019
, “
Application of Endwall Contouring in a High-Subsonic Tandem Cascade With Endwall Boundary Layer Suction
,”
Aerospace Sci. Technol.
,
84
, pp.
245
256
. 10.1016/j.ast.2018.08.041
12.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2008
, “
Control of Three-Dimensional Separations in Axial Compressors by Tailored Boundary Layer Suction
,”
ASME J. Turbomach.
,
130
(
1
), p.
011004
. 10.1115/1.2749294
13.
Kerrebrock
,
J. L.
,
Drela
,
M. A.
,
Merchant
,
A. A.
, and
Schuler
,
B. J.
,
1998
, “
A Family of Designs for Aspirated Compressors
,”
ASME
Paper No. 98-GT-196
. 10.1115/98-gt-196
14.
Merchant
,
A. A.
,
Drela
,
M.
,
Kerrebrock
,
J. L.
,
Adamczyk
,
J. J.
, and
Celestina
,
M.
,
2000
, “
Aerodynamic Design and Analysis of a High Pressure Ratio Aspirated Compressor Stage
,”
ASME
Paper No. V001T03A103
. 10.1115/2000-gt-0619
15.
Kerrebrock
,
J. L.
,
Epstein
,
A. H.
,
Merchant
,
A. A.
,
Guenette
,
G. R.
,
Parker
,
D.
,
Onnee
,
J. F.
, and
Shabbir
,
A.
,
2008
, “
Design and Test of an Aspirated Counter Rotating Fan
,”
ASME J. Turbomach.
,
130
(
2
), p.
021004
. 10.1115/1.2776951
16.
Chen
,
S. W.
,
Zhou
,
Z. H.
,
Wang
,
S. T.
, and
Wang
,
Z. Q.
,
2018
, “
Numerical Investigation of Boundary Layer Suction on Certain Highly Loaded Aspirated Compressor at Low Speeds
,”
PIME, Part G: J. Aerospace Eng.
,
232
(
1
), pp.
30
41
. 10.1177/0954410016670417
17.
Liesner
,
K.
,
Meyer
,
R.
,
Gmelin
,
C.
, and
Thiele
,
F.
,
2013
, “
On the Performance of Boundary Layer Suction for Secondary Flow Control in a High Speed Compressor Cascade
,”
AIAA Fluid Dynamics and Co-Located Conference
,
San Diego, CA
,
June 24–27
.
18.
Liesner
,
K.
,
Meyer
,
R.
,
Lemke
,
M.
,
Gmelin
,
C.
, and
Thiele
,
F.
,
2010
, “
On the Efficiency of Secondary Flow Suction in a Compressor Cascade
.”
ASME
Paper No. GT2010-22336
. 10.1115/gt2010-22336
19.
Sachdeva
,
A.
, and
Leboeuf
,
F.
,
2011
, “
Topological Studies of Three-Dimensional Flows in a High Pressure Compressor Stator Blade Row Without and With Boundary Layer Aspiration
,”
Chinese J. Aeronautics
,
24
(
5
), pp.
541
549
. 10.1016/S1000-9361(11)60063-0
20.
Gmelin
,
C.
,
Zander
,
V.
,
Hecklau
,
M.
,
Thiele
,
F.
,
Nitsche
,
W.
,
Huppertz
,
A.
, and
Swoboda
,
M.
,
2012
, “
Active Flow Control Concepts on a Highly Loaded Subsonic Compressor Cascade: Résumé of Experimental and Numerical Results
,”
ASME J. Turbomach.
,
134
(
6
), p.
061021
. 10.1115/1.4006308
21.
Bons
,
J. P.
,
Benton
,
S.
,
Bernardini
,
C.
, and
Bloxham
,
M. J.
,
2018
, “
Active Flow Control for Low-Pressure Turbines
,”
AIAA J.
,
56
(
7
), pp.
2687
2698
. 10.2514/1.J056697
22.
Sun
,
M.
, and
Hamdani
,
H.
,
2001
, “
Separation Control by Alternating Tangential Blowing/Suction at Multiple Slots
,”
AIAA J.
,
39
(
4
), pp.
735
737
. 10.2514/2.1369
23.
Evans
,
S.
, and
Hodson
,
H.
,
2012
, “
Separation-Control Mechanisms of Steady and Pulsed Vortex-Generator Jets
,”
AIAA J. Propulsion Power
,
28
(
6
), pp.
1201
1213
. 10.2514/1.B34457
24.
De Giorgi
,
M. G.
,
De Luca
,
C. G.
,
Ficarella
,
A.
, and
Marra
,
F.
,
2015
, “
Comparison Between Synthetic Jets and Continuous Jets for Active Flow Control: Application on a NACA 0015 and a Compressor Stator Cascade
,”
Aerospace Sci. Technol.
,
43
, pp.
1201
1213
. 10.1016/j.ast.2015.03.004
25.
Li
,
Y.
,
Wu
,
Y.
,
Zhou
,
M.
,
Su
,
C.
,
Zhang
,
X.
, and
Zhu
,
J.
,
2010
, “
Control of the Corner Separation in a Compressor Cascade by Steady and Unsteady Plasma Aerodynamic Actuation
,”
Experiments Fluids
,
48
(
6
), pp.
1015
1023
. 10.1007/s00348-009-0787-2
26.
Bernardini
,
C.
,
Benton
,
S.
,
Chen
,
J.
, and
Bons
,
J. P.
,
2013
, “
Pulsed Jets Laminar Separation Control Using Instability Exploitation
,”
AIAA J.
,
52
(
1
), pp.
104
115
. 10.2514/1.J052274
27.
Brown
,
G. L.
, and
Roshko
,
A.
,
1974
, “
On Density Effects and Large Structure in Turbulent Mixing Layers
,”
J. Fluid Mech.
,
64
(
4
), pp.
775
816
. 10.1017/S002211207400190X
28.
Greenblatt
,
D.
, and
Wygnanski
,
I. J.
,
2000
, “
The Control of Flow Separation by Periodic Excitation
,”
Progress Aerospace Sci.
,
36
(
7
), pp.
487
545
. 10.1016/S0376-0421(00)00008-7
29.
Seifert
,
A.
,
Bachar
,
T.
,
Koss
,
D.
,
Shepshelovich
,
M.
, and
Wygnanskil
,
I.
,
1993
, “
Oscillatory Blowing: A Tool to Delay Boundary-Layer Separation
,”
AIAA J.
,
31
(
11
), pp.
2052
2060
. 10.2514/3.49121
30.
Zhang
,
H.
,
Chen
,
S.
,
Meng
,
Q.
, and
Wang
,
S.
,
2018
, “
Flow Separation Control Using Unsteady Pulsed Suction Through Endwall Bleeding Holes in a Highly Loaded Compressor Cascade
,”
Aerospace Sci. Technol.
,
72
, pp.
455
464
. 10.1016/j.ast.2017.11.031
31.
Zhang
,
H.
,
Chen
,
S.
,
Gong
,
Y.
, and
Wang
,
S.
,
2018
, “
Flow Control Using Unsteady Pulsed Holed Suction With Different Excitation Models in a Highly Loaded Compressor Cascade
,”
PIME, Part A: J. Power Energy
,
232
(
6
), pp.
593
607
. 10.1177/0957650917740769
32.
Zhang
,
H.
,
Chen
,
S.
,
Gong
,
Y.
,
Wang
,
S.
, and
Wang
,
Z.
,
2018
, “
Combined Application of Negative Bowed Blades and Unsteady Pulsed Holed Suction in a High-Load Compressor in Terms of Aerodynamic Performance and Energy Efficiency
,”
Appl. Therm. Eng.
,
144
, pp.
291
304
. 10.1016/j.applthermaleng.2018.08.046
33.
Gümmer
,
V.
,
Goller
,
M.
, and
Swoboda
,
M.
,
2008
, “
Numerical Investigation of End Wall Boundary Layer Removal on Highly Loaded Axial Compressor Blade Rows
,”
ASME J. Turbomach.
,
130
(
1
), p.
011015
. 10.1115/1.2749297
34.
Gbadebo
,
S.
,
2004
, “
Three-Dimensional Separations in Compressors
,”
Ph.D. thesis
, https://www.repository.cam.ac.uk/handle/1810/251905
35.
Bloxham
,
M.
, and
Bons
,
J.
,
2014
, “
A Global Approach to Turbomachinery Flow Control-Passage Vortex Control
,”
ASME J. Turbomach.
,
136
(
4
), p.
041003
. 10.1115/1.4024686
36.
Xu
,
H.
,
Cai
,
L.
,
Ding
,
J.
,
Zhang
,
L.
,
Wang
,
S.
, and
Wang
,
Z.
,
2019
, “
Numerical Investigations on Oscillating Aspiration Control in High-Load Compressor Cascades
,”
J. Propul. Power
,
35
(
4
), pp.
850
862
. 10.2514/1.B37200
37.
Herrig
,
L.
,
Emery
,
J.
, and
Erwin
,
J.
,
1957
, “
Systematic Two- Dimensional Cascade Tests of NACA 65-Series Compressor Blades at Low Speeds
,”
National Advisory Committee for Aeronautics
,
Langley Aeronautical Laboratory, Langley Field, VA
, Report No. NACA-TN-3916.
38.
Peacock
,
R.
,
1982
, “
A Review of Turbomachinery Tip Gap Effects: Part 1: Cascades
,”
Int. J. Heat Fluid Flow
,
3
(
4
), pp.
185
193
. 10.1016/0142-727X(82)90017-0
39.
Gao
,
F.
,
Ma
,
W.
,
Zambonini
,
G.
,
Boudet
,
J.
,
Ottavy
,
X.
,
Lu
,
L.
, and
Shao
,
L.
,
2015
, “
Large-Eddy Simulation of 3-D Corner Separation in a Linear Compressor Cascade
,”
Phys. Fluids
,
27
(
8
), p.
085105
. 10.1063/1.4928246
40.
Zhou
,
Z.
,
Chen
,
S.
,
Li
,
W.
,
Wang
,
S.
, and
Zhou
,
X.
,
2018
, “
Experiment Study of Aerodynamic Performance for the Suction-Side and Pressure-Side Winglet-Cavity Tips in a Turbine Blade Cascade
,”
Exp. Therm. Fluid. Sci.
,
90
, pp.
220
230
. 10.1016/j.expthermflusci.2017.09.020
41.
Zang
,
B.
,
Mayer
,
Y.
, and
Azarpeyvand
,
M.
,
2020
, “
On the Aerodynamic and Aeroacoustic Characteristics of a NACA 65-410 Airfoil at Moderate Reynolds Number
,”
AIAA
AVIATION 2020 FORUM
, p.
2599
. 10.2514/6.2020-2599
42.
Sarimurat
,
M.
, and
Dang
,
T.
,
2014
, “
An Analytical Model for Boundary Layer Control via Steady Blowing and Its Application to NACA-65-410 Cascade
,”
ASME J. Turbomach.
,
136
(
6
), p.
061011
. 10.1115/1.4025585
43.
Paduano
,
J.
,
Epstein
,
A.
,
Valavani
,
L.
,
Longley
,
J.
,
Greitzer
,
E.
, and
Guenette
,
G.
,
1993
, “
Active Control of Rotating Stall in a low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
115
(
1
), pp.
48
56
. 10.1115/1.2929217
44.
Merchant
,
A.
,
Kerrebrock
,
J. L.
,
Adamczyk
,
J.
, and
Braunscheidel
,
E.
,
2005
, “
Experimental Investigation of a High Pressure Ratio Aspirated Fan Stage
,”
ASME J. Turbomach.
,
127
(
1
), pp.
43
51
. 10.1115/1.1812323
45.
Kubrich
,
K.
,
B€olcs
,
A.
, and
Ott
,
P.
,
2004
, “
Boundary Layer Suction Via a Slot in a Transonic Compressor: Numerical Parameter Study and First Experiments
,”
ASME
Paper No. GT2004-53753
. 10.1115/gt2004-53758
46.
Sarimurat
,
M.
, and
Dang
,
T. Q.
,
2012
, “
Shock Management in Diverging Flow Passages by Blowing/Suction, Part 1: Quasi-One-Dimensional Theory
,”
J. Propul. Power
,
28
(
6
), pp.
1222
1229
. 10.2514/1.B34136
47.
Saul
,
A.
,
Ireland
,
P.
,
Coull
,
J.
,
Wong
,
T.
,
Li
,
H.
, and
Romero
,
E.
,
2019
, “
An Experimental Investigation of Adiabatic Film Cooling Effectiveness and Heat Transfer Coefficient on a Transonic Squealer Tip
,”
ASME J. Turbomach.
,
141
(
9
), p.
091005
. 10.1115/1.4043263
48.
Liu
,
H.
,
Jiang
,
S.
,
Yu
,
Y.
,
Zhang
,
D.
, and
Chen
,
H.
,
2017
, “
Secondary Flow Control Using Endwall jet Fence in a High-Speed Compressor Cascade
,”
J. Mech. Sci. Technol.
,
31
(
10
), pp.
4841
4852
. 10.1007/s12206-017-0932-4
49.
Zheng
,
X.
,
Zhou
,
X.
, and
Zhou
,
S.
,
2005
, “
Investigation on a Type of Flow Control to Weaken Unsteady Separated Flows by Unsteady Excitation in Axial Flow Compressors
,”
ASME J. Turbomach.
,
127
(
3
), pp.
489
496
. 10.1115/1.1860572
50.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
,
2002
, “
The Fluid Dynamics of LPT Blade Separation Control Using Pulsed Jets
,”
ASME J. Turbomach.
,
124
(
1
), pp.
77
85
. 10.1115/1.1425392
51.
Cattafesta
,
L. N.
III
, and
Sheplak
,
M.
,
2011
, “
Actuators for Active Flow Control
,”
Annual Rev. Fluid Mech.
,
43
(
1
), pp.
247
272
. 10.1146/annurev-fluid-122109-160634
52.
Wu
,
J.
,
Lu
,
X.
,
Denny
,
A. G.
,
Fan
,
M.
, and
Wu
,
J.
,
1998
, “
Post-Stall Flow Control on an Airfoil by Local Unsteady Forcing
,”
J. Fluid Mech.
,
371
, pp.
21
58
. 10.1017/S0022112098002055
53.
Qin
,
Y.
,
Wang
,
R. Y.
,
Song
,
Y. P.
,
Chen
,
F.
, and
Liu
,
H. P.
,
2016
, “
Active Flow Control on a Highly Loaded Compressor Stator Cascade With Synthetic Jets
,”
ASME
Paper No. GT-2016-56830
. 10.1115/gt2016-56830
54.
Chen
,
C.
,
Chen
,
F.
, and
Yu
,
J.
,
2018
, “
Experimental Investigation of End-Wall VGJs in a Compressor Cascade
,”
Appl. Therm. Eng.
,
145
(
4
), pp.
386
395
. 10.1016/j.applthermaleng.2018.09.065
55.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2011
, “
Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
331
339
. 10.1115/1.1811093
56.
Kang
,
S.
, and
Hirsch
,
C.
,
1991
, “
Three Dimensional Flow in a linear Compressor Cascade at Design Condition
,”
ASME Paper No. GT-1991-114
.
57.
Qin
,
Y.
,
2018
, “
Mechanisms of Corner Separation Control in Compressor Cascades With Synthetic Jets
,”
Ph.D. thesis (in Chinese)
https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFDLAST2019&filename=1018895621.nh
You do not currently have access to this content.