Abstract

In this study, the unsteady behavior of the boundary layers developing on a low-pressure turbine (LPT) stator profile and their effect on secondary flow patterns in a 1.5-stage turbine configuration are investigated under the influence of periodic inflow perturbations. The experimental setup previously employed to analyze the unsteady secondary flow in the stator wake has been enhanced by hot-film sensor arrays placed on the stator profiles at different blade height positions to provide time-resolved data from within the passage. The stator inflow is perturbed by a rotating wake generator, and a modified T106 profile has been considered for the blading. The modified profile, labeled as T106RUB, was developed for matching the transition and separation characteristics of the popular original T106 profile at low flow speeds, thus facilitating measurements to be taken in a large-scale test rig with its improved accessibility. The transition phenomena occurring in the profile boundary layers are investigated under both unperturbed and periodically perturbed inflow by means of spectral analysis, the semi-quantitative characterization of the wall-stress system, and an evaluation of the statistic quantities. In particular, the periodic changes of the suction-side boundary layer flow region toward the trailing edge are studied in detail. Furthermore, time-resolved hot-film measurements at different blade height positions facilitate a detailed comparison of the quasi two-dimensional mid-span profile flow and the near end-wall profile flow, which is subject to the influence of secondary flow structures. These information are employed to assess to which extent the additional turbulence originating from the wakes affects the blade boundary layers and thus the secondary flow structures. Furthermore, the role of the perturbation frequency on the coupled system of boundary layers and secondary flow structures is evaluated.

References

1.
Mayle
,
R.
,
1991
, “
The 1991 IGTI Scholar Lecture: The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME. J. Turbomach.
,
113
(
4
), pp.
509
536
.
2.
Meyer
,
R. X.
,
1958
, “
The Effect of Wakes on the Transient Pressure and Velocity Distributions in Turbomachines
,”
ASME J. Basic Eng.
,
80
(
7
), pp.
1544
1552
.
3.
Stieger
,
R. D.
, and
Hodson
,
H. P.
,
2005
, “
The Unsteady Development of a Turbulent Wake Through a Downstream Low-Pressure Turbine Blade Passage
,”
ASME J. Turbomach.
,
127
(
2
), pp.
388
394
.
4.
Pfeil
,
H.
, and
Eifler
,
J.
,
1976
, “
Turbulenzverhältnisse Hinter Rotierenden Zylindergittern
,”
Forschung im Ingenieurwesen
,
42
(
1
), pp.
27
32
.
5.
Hodson
,
H. P.
, and
Howell
,
R. J.
,
2005
, “
The Role of Transition in High-Lift Low-Pressure Turbines for Aeroengines
,”
Prog. Aerosp. Sci.
,
41
(
6
), pp.
419
454
.
6.
Volino
,
R. J.
,
2011
, “
Effect of Unsteady Wakes on Boundary Layer Separation on a Very High Lift Low Pressure Turbine Airfoil
,”
ASME J. Turbomach.
,
134
(
1
), p.
011011
.
7.
Mahallati
,
A.
,
McAuliffe
,
B. R.
,
Sjolander
,
S. A.
, and
Praisner
,
T.
,
2013
, “
Aerodynamics of a Low-Pressure Turbine Airfoil at Low-Reynolds Numbers—Part I: Steady Flow Measurements
,”
ASME J. Turbomach.
,
135
(
1
), p.
011010
.
8.
Mahallati
,
A.
, and
Sjolander
,
S. A.
,
2013
, “
Aerodynamics of a Low-Pressure Turbine Airfoil at Low-Reynolds Numbers—Part II: Blade-Wake Interaction
,”
ASME J. Turbomach.
,
135
(
1
), p.
011011
.
9.
Ciorciari
,
R.
,
Kirik
,
I.
, and
Niehuis
,
R.
,
2014
, “
Effects of Unsteady Wakes on the Secondary Flows in the Linear T106 Turbine Cascade
,”
ASME J. Turbomach.
,
136
(
9
), p.
091010
.
10.
Krug
,
A.
,
Busse
,
P.
, and
Vogeler
,
K.
,
2015
, “
Experimental Investigation Into the Effects of the Steady Wake-Tip Clearance Vortex Interaction in a Compressor Cascade
,”
ASME J. Turbomach.
,
137
(
6
), p.
061006
.
11.
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Ampellio
,
E.
,
2016
, “
Free-Stream Turbulence Effects on the Boundary Layer of a High-Lift Low-Pressure-Turbine Blade
,”
J. Therm. Sci.
,
25
(
3
), pp.
195
206
.
12.
Lengani
,
D.
,
Simoni
,
D.
,
Ubaldi
,
M.
,
Zunino
,
P.
, and
Bertini
,
F.
,
2017
, “
Time Resolved PIV Measurements of the Unsteady Wake Migration in a LPT Blade Passage: Effect of the Wake Passing Frequency
,”
Proceedings of 12th European Conference on Turbomachinery, Fluid Dynamics and Thermodynamics, ETC12
,
Stockholm, Sweden
, Apr. 3–7, Paper No. ETC2017-324.
13.
Sinkwitz
,
M.
,
Engelmann
,
D.
, and
Mailach
,
R.
,
2017
, “
Experimental Investigation of Periodically Unsteady Wake Impact on Secondary Flow in a 1.5 Stage Full Annular LPT Cascade With Modified T106 Blading
,”
Proceedings of ASME Turbo Expo 2017
,
Charlotte, NC
, Paper No. GT2017-64390.
14.
Sinkwitz
,
M.
,
Winhart
,
B.
,
Engelmann
,
D.
,
di Mare
,
F.
, and
Mailach
,
R.
,
2019
, “
Experimental and Numerical Investigation of Secondary Flow Structures in an Annular Lpt Cascade Under Periodic Wake Impact—Part 1: Experimental Results
,”
ASME J. Turbomach.
,
141
(
2
), p.
021008
.
15.
Sinkwitz
,
M.
,
Winhart
,
B.
,
Engelmann
,
D.
,
di Mare
,
F.
, and
Mailach
,
R.
,
2019
, “
On the Periodically Unsteady Interaction of Wakes, Secondary Flow Development, and Boundary Layer Flow in an Annular Low-Pressure Turbine Cascade: An Experimental Investigation
,”
ASME J. Turbomach.
,
141
(
9
), p.
091001
.
16.
Winhart
,
B.
,
Sinkwitz
,
M.
,
Engelmann
,
D.
,
di Mare
,
F.
, and
Mailach
,
R.
,
2018
, “
On the Periodically Unsteady Interaction of Wakes, Secondary Flow Development and Boundary Layer Flow in an Annular Lpt Cascade. Part 2—Numerical Investigation
,”
Proceedings of ASME Turbo Expo 2018
,
Oslo, Norway
, Paper No. GT2018-76873.
17.
Winhart
,
B.
,
Sinkwitz
,
M.
,
Schramm
,
A.
,
Engelmann
,
D.
,
di Mare
,
F.
, and
Mailach
,
R.
,
2019
, “
Experimental and Numerical Investigation of Secondary Flow Structures in an Annular Lpt Cascade Under Periodic Wake Impact—Part 2: Numerical Results
,”
ASME J. Turbomach.
,
141
(
2
), p.
021008
.
18.
Gomes
,
R.
,
Stotz
,
S.
,
Blaim
,
F.
, and
Niehuis
,
R.
,
2015
, “
Hot-Film Measurements on a Low Pressure Turbine Linear Cascade With Bypass Transition
,”
ASME J. Turbomach.
,
137
(
9
), p.
091007
.
19.
Winhart
,
B.
,
Sinkwitz
,
M.
,
Engelmann
,
D.
, and
di Mare
,
F.
,
2020
, “
Large-Eddy Simulation of Periodic Wake Impact on Boundary Layer Transition Mechanisms on a Highly Loaded Low-Pressure Turbine Blade
,”
Proceedings of ASME Turbo Expo 2020
,
London, UK
, Paper No. GT2020-14555.
20.
Sinkwitz
,
M.
,
2021
, “
Experimentelle Untersuchung Der Entstehung Von Sekundärströmung in Turbinen-Ringgittern Unter Periodisch-Instationärer Zuströmung
,”
Ph.D. thesis
,
Ruhr University Bochum
,
Bochum, Germany
.
21.
Hodson
,
H. P.
,
Huntsman
,
I.
, and
Steele
,
A.
,
1994
, “
An Investigation of Boundary Layer Development in a Multistage Lp Turbine
,”
ASME J. Turbomach.
,
116
(
3
), pp.
375
383
.
22.
McAuliffe
,
B. R.
, and
Yaras
,
M. I.
,
2010
, “
Transition Mechanisms in Separation Bubbles Under Low- and Elevated-Freestream Turbulence
,”
ASME J. Turbomach.
,
132
(
1
), p.
011004
.
23.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H. -W.
,
1997
, “
Boundary Layer Development in Axial Compressors and Turbines: Part 1 of 4—Composite Picture
,”
ASME J. Turbomach.
,
119
(
1
), pp.
114
127
.
24.
Engelmann
,
D.
,
Sinkwitz
,
M.
,
di Mare
,
F.
,
Koppe
,
B.
,
Mailach
,
R.
,
Ventosa-Molina
,
J.
,
Fröhlich
,
J.
,
Schubert
,
T.
, and
Niehuis
,
R.
,
2021
, “
Near-Wall Flow in Turbomachinery Cascades—Results of a German Collaborative Project
,”
Int. J. Turbomach., Propulsion Power
,
6
(
2
), p.
9
.
You do not currently have access to this content.