Abstract

Detached eddy simulation (DES) and its variants are emerging tools for turbomachinery simulations. In this paper, the state-of-the-art upgrades of DES are reviewed, and their capabilities in predicting compressor tip leakage flow are discussed. The upgrade with the best potential is identified as the delayed DES (DDES) method with the grid spacing FKHΔhyb, which unlocks the physics of the Kelvin–Helmholtz instability in compressor tip leakage flow. The upgraded grid spacing FKHΔhyb is compared against the widely used default one Δmax in a backward-facing step and a low-speed axial compressor rotor. Results show that the DDES method with FKHΔhyb predicts both the main flow field and the turbulence field with reasonably good accuracy. However, the original DDES method with Δmax predicts a delayed transition to turbulence, which leads to an inaccurate prediction of the main flow field when using a coarse mesh. The findings in this paper highlight the future opportunities for using the DDES-FKHΔhyb method to predict tip-driven compressor stall and generate a turbulence database for turbulence model development.

References

1.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longman Scientific and Technical
,
Harlow, UK
.
2.
Choi
,
H.
, and
Moin
,
P.
,
2012
, “
Grid-Point Requirements for Large Eddy Simulation: Chapman’s Estimates Revisited
,”
Phys. Fluids
,
24
(
1
), pp.
30
35
.
3.
Tyacke
,
J.
,
Vadlamani
,
N. R.
,
Trojak
,
W.
,
Watson
,
R.
,
Ma
,
Y.
, and
Tucker
,
P. G.
,
2019
, “
Turbomachinery Simulation Challenges and the Future
,”
Prog. Aerosp. Sci.
,
110
, p.
100554
.
4.
Spalart
,
P. R.
,
Jou
,
W.-H.
,
Strelets
,
M.
, and
Allmaras
,
S.
,
1997
, “Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach,”
Proceedings of First AFOSR International Conference on DNS/LES
,
C.
Liu
, and
Z.
Liu
, eds.,
Greyden Press
,
Columbus, OH
, pp.
137
147
.
5.
Liu
,
Y.
,
Yan
,
H.
,
Lu
,
L.
, and
Li
,
Q.
,
2017
, “
Investigation of Vortical Structures and Turbulence Characteristics in Corner Separation in a Linear Compressor Cascade Using DDES
,”
ASME J. Fluids Eng.
,
139
(
2
), p.
021107
.
6.
Yan
,
H.
,
Liu
,
Y.
,
Li
,
Q.
, and
Lu
,
L.
,
2018
, “
Turbulence Characteristics in Corner Separation in a Highly Loaded Linear Compressor Cascade
,”
Aerosp. Sci. Technol.
,
75
, pp.
139
154
.
7.
Wang
,
H.
,
Lin
,
D.
,
Su
,
X.
, and
Yuan
,
X.
,
2017
, “
Entropy Analysis of the Interaction Between the Corner Separation and Wakes in a Compressor Cascade
,”
Entropy
,
19
(
7
), p.
324
.
8.
Xia
,
G.
,
Medic
,
G.
, and
Praisner
,
T. J.
,
2018
, “
Hybrid RANS/LES Simulation of Corner Stall in a Linear Compressor Cascade
,”
ASME J. Turbomach.
,
140
(
8
), p.
081004
.
9.
Xia
,
G.
,
Yin
,
Z.
, and
Medic
,
G.
,
2020
, “Application of SST-Based SLA-DDES Formulation to Turbomachinery Flows,”
Progress in Hybrid RANS-LES Modelling
, Vol.
143
,
Y.
Hoarau
,
S.
Peng
,
D.
Schwamborn
,
A.
Revell
, and
C.
Mockett
, eds.,
Springer
,
Cham, Switzerland
, pp.
335
346
.
10.
You
,
D.
,
Wang
,
M.
,
Moin
,
P.
, and
Mittal
,
R.
,
2007
, “
Large-Eddy Simulation Analysis of Mechanisms for Viscous Losses in a Turbomachinery Tip-Clearance Flow
,”
J. Fluid Mech.
,
586
, pp.
177
204
.
11.
Garbaruk
,
A.
,
Shur
,
M.
,
Strelets
,
M.
, and
Travin
,
A.
,
2005
, “
Detached-Eddy Simulation of a Linear Compressor Cascade With Tip Gap and Moving Wall
,”
Symposium on Hybrid RANS-LES Methods
,
Stockholm, Sweden
,
July 14–15
, pp.
14
15
.
12.
Franke
,
M.
, and
Morsbach
,
C.
,
2018
, “Assessment of Scale-Resolving Simulations for Turbomachinery Applications,”
Progress in Hybrid RANS-LES Modelling
, Vol.
137
,
Y.
Hoarau
,
S.
Peng
,
D.
Schwamborn
, and
A.
Revell
, eds.,
Springer
,
Cham, Switzerland
, pp.
221
231
.
13.
Yamada
,
K.
,
Kikuta
,
H.
,
Iwakiri
,
K.-i.
,
Furukawa
,
M.
, and
Gunjishima
,
S.
,
2013
, “
An Explanation for Flow Features of Spike-Type Stall Inception in An Axial Compressor Rotor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021023
.
14.
Liu
,
Y.
,
Zhong
,
L.
, and
Lu
,
L.
,
2019
, “
Comparison of DDES and URANS for Unsteady Tip Leakage Flow in An Axial Compressor Rotor
,”
ASME J. Fluids Eng.
,
141
(
12
), p.
121405
.
15.
Riéra
,
W.
,
Marty
,
J.
,
Castillon
,
L.
, and
Deck
,
S.
,
2016
, “
Zonal Detached-Eddy Simulation Applied to the Tip-Clearance Flow in An Axial Compressor
,”
AIAA J.
,
54
(
8
), pp.
2377
2391
.
16.
Marty
,
J.
, and
Uribe
,
C.
,
2020
, “
Impact of Underlying RANS Turbulence Models in Zonal Detached Eddy Simulation: Application to a Compressor Rotor
,”
Int. J. Turbomach. Propuls. Power
,
5
(
3
), p.
22
.
17.
Yamada
,
K.
,
Furukawa
,
M.
,
Tamura
,
Y.
,
Saito
,
S.
,
Matsuoka
,
A.
, and
Nakayama
,
K.
,
2017
, “
Large-Scale Detached-Eddy Simulation Analysis of Stall Inception Process in a Multistage Axial Flow Compressor
,”
ASME J. Turbomach.
,
139
(
7
), p.
071002
.
18.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.
19.
Spalart
,
P.
, and
Allmaras
,
S.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerospatiale
,
1
, pp.
5
21
.
20.
Shur
,
M.
,
Spalart
,
P.
,
Strelets
,
M.
, and
Travin
,
A.
,
1999
, “Detached-Eddy Simulation of An Airfoil At High Angle of Attack,”
Engineering Turbulence Modelling and Experiments
, Vol.
4
,
Rodi
,
W.
, and
Laurence
,
D.
, eds.,
Elsevier Science Ltd
,
Oxford
, pp.
669
678
.
21.
Spalart
,
P. R.
,
2009
, “
Detached-Eddy Simulation
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
181
202
.
22.
Cummings
,
R. M.
, and
Schütte
,
A.
,
2013
, “
Detached-Eddy Simulation of the Vortical Flow Field About the VFE-2 Delta Wing
,”
Aerosp. Sci. Technol.
,
24
(
1
), pp.
66
76
.
23.
Gritskevich
,
M. S.
,
Garbaruk
,
A. V.
,
Schütze
,
J.
, and
Menter
,
F. R.
,
2012
, “
Development of DDES and IDDES Formulations for the k-ω Shear Stress Transport Model
,”
Flow Turbul. Combust.
,
88
(
3
), pp.
431
449
.
24.
Chauvet
,
N.
,
Deck
,
S.
, and
Jacquin
,
L.
,
2007
, “
Zonal Detached Eddy Simulation of a Controlled Propulsive Jet
,”
AIAA J.
,
45
(
10
), pp.
2458
2473
.
25.
Mockett
,
C.
,
Fuchs
,
M.
,
Garbaruk
,
A.
,
Shur
,
M.
,
Spalart
,
P.
,
Strelets
,
M.
,
Thiele
,
F.
, and
Travin
,
A.
,
2015
, “Two Non-Zonal Approaches to Accelerate RANS to LES Transition of Free Shear Layers in DES,”
Progress in Hybrid RANS-LES Modelling
, Vol.
130
,
S.
Girimaji
,
W.
Haase
,
S.
Peng
, and
D.
Schwamborn
, eds.,
Springer
,
Cham
, pp.
187
201
.
26.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2015
, “
An Enhanced Version of DES With Rapid Transition From RANS to LES in Separated Flows
,”
Flow Turbul. Combust.
,
95
(
4
), pp.
709
737
.
27.
Liu
,
J.
,
Zhu
,
W.
, and
Xiao
,
Z.
,
2020
, “Performance of a Modified DDES for the Near Stall Flow Past a NACA0015 Airfoil,”
Progress in Hybrid RANS-LES Modelling
, Vol.
143
,
Y.
Hoarau
,
S.
Peng
,
D.
Schwamborn
,
A.
Revell
, and
C.
Mockett
, eds.,
Springer
,
Cham
, pp.
237
247
.
28.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2008
, “
A Hybrid RANS-LES Approach With Delayed-DES and Wall-Modelled LES Capabilities
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1638
1649
.
29.
Menter
,
F.
,
2018
, “Stress-Blended Eddy Simulation (SBES)—A New Paradigm in Hybrid RANS-LES Modeling,”
Progress in Hybrid RANS-LES Modelling
, Vol.
137
,
Y.
Hoarau
,
S.
Peng
,
D.
Schwamborn
, and
A.
Revell
, eds.,
Springer
,
Cham
, pp.
27
37
.
30.
Deck
,
S.
, and
Renard
,
N.
,
2020
, “
Towards An Enhanced Protection of Attached Boundary Layers in Hybrid RANS/LES Methods
,”
J. Comput. Phys.
,
400
, p.
108970
.
31.
Vatsa
,
V. N.
,
Lockard
,
D. P.
, and
Spalart
,
P. R.
,
2017
, “
Grid Sensitivity of SA-Based Delayed-Detached-Eddy-Simulation Model for Blunt-Body Flows
,”
AIAA J.
,
55
(
8
), pp.
2842
2847
.
32.
Taylor
,
J. V.
,
2019
, “
Separated Flow Topology in Compressors
,”
ASME J. Turbomach.
,
141
(
9
), p.
091014
.
33.
Bousquet
,
Y.
,
Binder
,
N.
,
Dufour
,
G.
,
Carbonneau
,
X.
,
Trebinjac
,
I.
, and
Roumeas
,
M.
,
2016
, “
Numerical Investigation of Kelvin–Helmholtz Instability in a Centrifugal Compressor Operating Near Stall
,”
ASME J. Turbomach.
,
138
(
7
), p.
071007
.
34.
Scillitoe
,
A. D.
,
Tucker
,
P. G.
, and
Adami
,
P.
,
2015
, “
Evaluation of RANS and ZDES Methods for the Prediction of Three-Dimensional Separation in Axial Flow Compressors
,”
ASME Paper No. GT2015-43975
.
35.
Deardorff
,
J. W.
,
1970
, “
A Numerical Study of Three-Dimensional Turbulent Channel Flow At Large Reynolds Numbers
,”
J. Fluid Mech.
,
41
(
2
), pp.
453
480
.
36.
Tian
,
S.
,
Gao
,
Y.
,
Dong
,
X.
, and
Liu
,
C.
,
2018
, “
Definitions of Vortex Vector and Vortex
,”
J. Fluid Mech.
,
849
, pp.
312
339
.
37.
Deck
,
S.
,
2012
, “
Recent Improvements in the Zonal Detached Eddy Simulation (ZDES) Formulation
,”
Theor. Comput. Fluid Dyn.
,
26
(
6
), pp.
523
550
.
38.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.
39.
Probst
,
A.
,
Lowe
,
J.
,
Reu
,
S.
,
Knopp
,
T.
, and
Kessler
,
R.
,
2016
, “
Scale-Resolving Simulations With a Low-Dissipation Low-Dispersion Second-Order Scheme for Unstructured Flow Solvers
,”
AIAA J.
,
54
(
10
), pp.
2972
2987
.
40.
Mohamed
,
K.
,
Nadarajah
,
S.
, and
Paraschivoiu
,
M.
,
2009
, “
Detached-Eddy Simulation of a Wing Tip Vortex At Dynamic Stall Conditions
,”
AIAA J. Aircr.
,
46
(
4
), pp.
1302
1313
.
41.
Langtry
,
R.
,
Larssen
,
J.
,
Winkler
,
C.
,
Dorgan
,
A.
, and
Mani
,
M.
,
2013
, “
DDES and Acoustic Prediction of Rudimentary Landing Gear Experiment Using Unstructured Finite Volume Methods
,”
Flow Turbul. Combust.
,
91
(
3
), pp.
717
745
.
42.
Strelets
,
M.
,
2001
, “
Detached Eddy Simulation of Massively Separated Flows
,”
AIAA Paper No. 2001-0879
.
43.
Hu
,
R.
,
Wang
,
L.
, and
Fu
,
S.
,
2016
, “
Investigation of the Coherent Structures in Flow Behind a Backward-Facing Step
,”
Int. J. Numer. Methods Heat Fluid Flow
,
26
(
3–4
), pp.
1050
1068
.
44.
Lin
,
D.
,
Su
,
X.
, and
Yuan
,
X.
,
2018
, “
DDES Analysis of the Wake Vortex Related Unsteadiness and Losses in the Environment of a High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
140
(
4
), p.
041001
.
45.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
,
1981
, “
Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge Kutta Time Stepping Schemes
,”
AIAA Paper No. 81-1259
.
46.
He
,
X.
,
Zhao
,
F.
, and
Vahdati
,
M.
,
2020
, “
Evaluation of Spalart-Allmaras Turbulence Model Forms for a Transonic Axial Compressor
,”
GPPS Paper No. GPPS-CH-2020-0013
.
47.
Driver
,
D. M.
, and
Seegmiller
,
H. L.
,
1985
, “
Features of a Reattaching Turbulent Shear Layer in Divergent Channel Flow
,”
AIAA J.
,
23
(
2
), pp.
163
171
.
48.
Spalart
,
R.
,
2001
, “
Young-Person’s Guide to Detached-Eddy Simulation Grids
,”
Technical Report NASA/CR-2001-211032
,
NASA Langley Research Center
,
Hampton, VA
.
49.
Le
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1997
, “
Direct Numerical Simulation of Turbulent Flow Over a Backward-Facing Step
,”
J. Fluid Mech.
,
330
, pp.
349
374
.
50.
Du
,
H.
,
Yu
,
X.
,
Zhang
,
Z.
, and
Liu
,
B.
,
2013
, “
Relationship Between the Flow Blockage of Tip Leakage Vortex and Its Evolutionary Procedures Inside the Rotor Passage of a Subsonic Axial Compressor
,”
J. Therm. Sci.
,
22
(
6
), pp.
522
531
.
51.
Liu
,
B.
,
An
,
G.
,
Yu
,
X.
, and
Zhang
,
Z.
,
2016
, “
Experimental Investigation of the Effect of Rotor Tip Gaps on 3D Separating Flows Inside the Stator of a Highly Loaded Compressor Stage
,”
Exp. Therm. Fluid Sci.
,
75
, pp.
96
107
.
52.
An
,
G.
,
Zhang
,
S.
,
Yu
,
X.
,
Liu
,
B.
, and
Yi
,
G.
,
2020
, “
Experimental Study of the Critical Incidence Phenomena in Low Speed Compressor Stators With Both Conventional and 3D Blading Designs
,”
Aerosp. Sci. Technol.
,
99
, p.
105771
.
53.
Liu
,
B.
,
Qiu
,
Y.
,
An
,
G.
, and
Yu
,
X.
,
2020
, “
Utilization of Zonal Method for Five-Hole Probe Measurements of Complex Axial Compressor Flows
,”
ASME J. Fluid Eng.
,
142
(
6
), p.
061504
.
54.
Schlichting
,
H.
, and
Gersten
,
K.
,
2017
, “Fundamentals of Turbulent Flows,”
Boundary-Layer Theory
,
Springer
,
Berlin/Heidelberg
, pp.
515
516
.
55.
Tyacke
,
J. C.
, and
Tucker
,
P. G.
,
2015
, “
Future Use of Large Eddy Simulation in Aero-Engines
,”
ASME J. Turbomach.
,
137
(
8
), p.
081005
.
56.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Freeman
,
C.
, and
Imregun
,
M.
,
2005
, “
On the Use of Atmospheric Boundary Conditions for Axial-Flow Compressor Stall Simulations
,”
ASME J. Turbomach.
,
127
(
2
), pp.
349
351
.
57.
Pope
,
S.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
58.
Hunt
,
J.
,
Wray
,
A.
, and
Moin
,
P.
,
1988
, “Eddies, Streams, and Convergence Zones in Turbulent Flows,”
Center for Turbulence Research Proceedings of the Summer Program
,
Stanford University
,
Stanford, CA
, pp.
193
208
.
59.
Celik
,
I. B.
,
Cehreli
,
Z. N.
, and
Yavuz
,
I.
,
2005
, “
Index of Resolution Quality for Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
949
958
.
60.
Banerjee
,
S.
,
Krahl
,
R.
,
Durst
,
F.
, and
Zenger
,
C.
,
2007
, “
Presentation of Anisotropy Properties of Turbulence, Invariants Versus Eigenvalue Approaches
,”
J. Turbul.
,
8
, pp.
1
27
.
61.
Emory
,
M.
, and
Iaccarino
,
G.
,
2014
, “Visualizing Turbulence Anisotropy in the Spatial Domain With Componentality Contours,”
Center for Turbulence Research Annual Research Briefs
,
Stanford University
,
Stanford, CA
, pp.
123
138
.
You do not currently have access to this content.