Abstract

The increased need to design higher performing aerodynamic shapes has led to design optimization cycles requiring high-fidelity CFD models and high-dimensional parametrization schemes. The computational cost of employing global search algorithms on such scenarios has typically been prohibitive for most academic and industrial environments. In this paper, a novel strategy is presented that leverages the capabilities of artificial neural networks for regressing complex unstructured data, while coupling them with dimensionality reduction algorithms. This approach enables employing global-based optimization methods on high-dimensional applications through a reduced computational cost. This methodology is demonstrated on the efficiency optimization of a modern jet engine fan blade with constrained pressure ratio. The outcome is compared against a state-of-the-art adjoint-based approach. Results indicate that the strategy proposed achieves comparable improvements to its adjoint counterpart with a reduced computational cost and can scale better to multi-objective optimization applications.

References

1.
Horlock
,
J.
, and
Denton
,
J.
,
2005
, “
A Review of Some Early Design Practice Using Computational Fluid Dynamics and a Current Perspective
,”
ASME J. Turbomach.
,
127
(
1
), pp.
5
13
.
2.
Jameson
,
A.
,
1988
, “
Aerodynamic Design Via Control Theory
,”
J. Sci. Comput.
,
3
(
3
), pp.
233
260
.
3.
Giles
,
M.
, and
Pierce
,
N.
,
2000
, “
An Introduction to the Adjoint Approach to Design
,”
Flow Turbul. Combust.
,
65
(
3–4
), pp.
393
415
.
4.
Papadimitriou
,
D.
, and
Giannakoglou
,
K.
,
2006
, “
Compressor Blade Optimization Using a Continuous Adjoint Formulation
,”
Proceedings of ASME Turbo Expo 2006
,
Barcelona, Spain
,
May 8–11
, pp.
1309
1317
.
5.
Duta
,
M.
,
Shahpar
,
S.
, and
Giles
,
M.
,
2007
, “
Turbomachinery Design Optimization Using Automatic Differentiated Adjoint Code
,”
Proceedings of ASME Turbo Expo 2007
,
Montreal, Canada
,
May 14–17
, pp.
1435
1444
.
6.
Wang
,
D.
,
He
,
L.
,
Li
,
Y.
, and
Wells
,
R.
,
2010
, “
Adjoint Aerodynamic Design Optimization for Blades in Multi-Stage Turbomachines: Part II—Validation and Application
,”
ASME J. Turbomach.
,
132
(
2
), p.
021012
.
7.
Xu
,
S.
,
Radford
,
D.
,
Meyer
,
M.
, and
Mueller
,
J.-D.
,
2015
, “
Cad-Based Adjoint Shape Optimisation of a One-Stage Turbine With Geometric Constraints
,”
Proceedings of ASME Turbo Expo 2015
,
Montreal, Canada
,
June 15–19
, p.
V02CT45A006
.
8.
Giugno
,
A.
,
Shahpar
,
S.
, and
Traverso
,
A.
,
2020
, “
Adjoint-Based Optimization of a Modern Jet Engine Fan Blade
,”
Proceedings of ASME Turbo Expo 2020
,
Virtual, Online
,
Sept. 21–25
.
9.
John
,
A.
,
Ning
,
Q.
, and
Shahpar
,
S.
,
2020
, “
The Influence of Parametrisation Setup on the Constrained Adjoint Optimisation of Transonic Fan Blade
,”
Proceedings of ASME Turbo Expo 2020
,
Virtual, Online
,
Sept. 21–25
.
10.
Connor
,
A.
,
Clarkson
,
P.
,
Shahpar
,
S.
, and
Leonard
,
P.
,
2016
, “
Engineering Design Optimisation Using Tabu Search
,”
Proceedings of Engineering Design Conference 2000
,
Uxbridge, UK
,
June
, pp.
371
378
.
11.
Ghisu
,
T.
,
Parks
,
G. T.
,
Jarret
,
J. P.
, and
Clarkson
,
J.
,
2008
, “
Accelerating Design Optimisation Via Principal Components’ Analysis
,”
Proceedings of 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Victoria, Canada
,
Sept. 10–12
, pp.
323
345
.
12.
Oyama
,
A.
,
Liou
,
M.-S.
, and
Obayashi
,
S.
,
2004
, “
Transonic Axial-Flow Blade Optimization: Evolutionary Algorithms/Three-Dimensional Navier–Stokes Solver
,”
J. Propul. Power
,
20
(
4
), pp.
612
619
.
13.
Chen
,
B.
, and
Yuan
,
X.
,
2008
, “
Advanced Aerodynamic Optimization System for Turbomachinery
,”
ASME J. Turbomach.
,
130
(
2
), p.
021005
.
14.
Caloni
,
S.
,
Shahpar
,
S.
, and
Coull
,
J.
,
2016
, “
Numerical Investigations of Different Tip Designs for Shroudless Turbine Blades
,”
J. Power Energy
,
230
(
7
), pp.
709
720
.
15.
Venturini
,
M.
,
2005
, “
Simulation of Compressor Transient Behavior Through Recurrent Neural Network Models
,”
ASME J. Turbomach.
,
128
(
3
), pp.
444
454
.
16.
Pierret
,
S.
, and
Van den Braembussche
,
R.
,
1999
, “
Turbomachinery Blade Design Using a Navier–Stokes Solver and Artificial Neural Network
,”
ASME J. Turbomach.
,
121
(
2
), pp.
326
332
.
17.
Rai
,
M.
, and
Madavan
,
N.
,
2000
, “
Aerodynamic Design Using Neural Networks
,”
AIAA J.
,
38
(
1
), pp.
173
182
.
18.
Kosowski
,
K.
,
Tucki
,
K.
, and
Kosowski
,
A.
,
2010
, “
Application of Artificial Neural Networks in Investigations of Steam Turbine Cascades
,”
ASME J. Turbomach.
,
132
(
1
), p.
014501
.
19.
Berguin
,
S.
, and
Mavris
,
D.
,
2014
, “
Dimensionality Reduction in Aerodynamic Design Using Principal Component Analysis With Gradient Information
,”
Proceedings of 10th AIAA Multidisciplinary Design Optimization Specialist Conference
,
National Harbor, MD
,
Jan. 13–17
.
20.
Sobol’
,
I.
,
2001
, “
Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates
,”
Math. Comput. Simul.
,
55
(
1–3
), pp.
271
280
.
21.
Constantine
,
P. G.
,
2015
,
Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies
,
SIAM Spotlights
,
Philadelphia, PA
.
22.
Sheshadri
,
P.
,
Shahpar
,
S.
,
Constantine
,
P.
,
Parks
,
G.
, and
Adams
,
M.
,
2017
, “
Turbomachinery Active Subspace Performance Maps
,”
ASME J. Turbomach.
,
140
(
4
), p.
041003
.
23.
Scillitoe
,
A.
,
Ubald
,
B.
,
Shahpar
,
S.
, and
Seshadri
,
P.
,
2020
, “
Design Space Exploration of Stagnation Temperature Probes Via Dimension Reduction
,”
Proceedings of ASME Turbo Expo 2020
,
Virtual, Online
,
Sept. 21–25
.
24.
Cybenko
,
G.
,
1989
, “
Approximation by Superpositions of a Sigmoidal Function
,”
Math. Control Signals Syst.
,
2
(
4
), pp.
303
314
.
25.
Haykin
,
S.
,
1999
,
Neural Networks: A Comprehensive Foundation
,
Prentice-Hall
,
Hoboken, NJ
.
26.
Gulli
,
A.
, and
Pal
,
S.
,
2017
,
Deep Learning With Keras
,
Packt Publishing Ltd.
,
Birmingham, UK
.
27.
Tikhonov
,
A. N.
, and
Arsenin
,
V. Y.
,
1977
,
Solution of Ill-Posed Problems
,
Winston & Sons
,
Washington, DC
.
28.
Lukaczyk
,
T.
,
Palacios
,
F.
,
Alonso
,
J.
, and
Constantine
,
P.
,
2014
, “
Active Subspaces for Shape Optimization
,”
Proceedings of 10th AIAA Multidisciplinary Design Optimization Specialist Conference
,
National Harbor, MD
,
Jan. 13–17
.
29.
Oliphant
,
T. E.
,
2007
, “
Python for Scientific Computing
,”
Comput. Sci. Eng.
,
9
(
3
), pp.
10
20
.
30.
Kaft
,
D.
,
1998
, “
A Software Package for Sequential Quadratic Programming
,” Tech. Rep., DFVLR-FB 88-28,
DLR German Aerospace Center—Institute for Flight Mechanics
.
31.
Zamboni
,
G.
, and
Xu
,
L.
,
2009
, “
Fan Root Aerodynamics for Large Bypass Gas Turbine Engines: Influence on the Engine Performance and 3D Design
,”
ASME J. Turbomach.
,
134
(
6
), p.
061017
.
32.
Lapworth
,
L.
,
2004
, “
Hydra-CFD: A Framework for Collaborative CFD Development
,”
Proceedings of International Conference on Scientific & Engineering Computation
,
Singapore
,
June 30–July 2
.
33.
Milli
,
A.
, and
Shahpar
,
S.
,
2012
, “
PADRAM: Parametric Design and Rapid Meshing System for Complex Turbomachinery Configurations
,”
Proceedings of ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
, Vol.
8
, pp.
2135
2148
.
You do not currently have access to this content.