Abstract

Numerical simulations of particle-laden flows have received growing attention in the last decade, due to the broad spectrum of industrial applications in which discrete phases prediction is of interest. Among these, ingestion of particles by turbomachinery is an area that is seeing vivid research and studies. The most common technique to tackle this kind of problem is the Eulerian–Lagrangian method, in which individual particles are tracked inside the domain. At the same time, in multistage turbomachinery simulation interfaces are needed to couple the flow solution in adjacent domains in relative motion. In this work, an open-source extension for Lagrangian simulations in multistage rotating machines is presented in the foam-extend environment. First, a thorough discussion of the implementation is presented, with particular emphasis on particle passage through general grid interfaces (GGI) and mixing planes. Moreover, a mass-conservative particle redistribution technique is described, as such a property is requested at interfaces between multiple reference frame (MRF). The peculiarities of the algorithm are then shown in a relevant test case. Eventually, three turbomachinery applications are presented, with growing complexity, to show the capabilities of the numerical code in real-life applications. Simulation results in terms of erosion and impacts on aerodynamic surfaces are also presented as examples of possible parameters of interest in particle-laden flow computations.

References

1.
Crowe
,
C. T.
,
Schwarzkopf
,
J. D.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
2012
,
Multiphase Flows With Droplets and Particles
,
CRC Press
,
Boca Raton, FL
.
2.
Guha
,
A.
,
2008
, “
Transport and Deposition of Particles in Turbulent and Laminar Flow
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
311
341
.
3.
Stalder
,
J.-P.
,
2001
, “
Gas Turbine Compressor Washing State of the Art: Field Experiences
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
363
370
.
4.
Crane
,
R.
,
2004
, “
Droplet Deposition in Steam Turbines
,”
Proc. Inst. Mech. Eng. Part C – J. Mech. Eng. Sci.
,
218
(
8
), pp.
859
870
.
5.
Suman
,
A.
,
Casari
,
N.
,
Fabbri
,
E.
,
Di Mare
,
L.
,
Montomoli
,
F.
, and
Pinelli
,
M.
,
2019
, “
Generalization of Particle Impact Behavior in Gas Turbine Via Non-Dimensional Grouping
,”
Prog. Energy Combust. Sci.
,
74
(
1
), pp.
103
151
.
6.
Suman
,
A.
,
Casari
,
N.
,
Fabbri
,
E.
,
Pinelli
,
M.
,
Di Mare
,
L.
, and
Montomoli
,
F.
,
2019
, “
Gas Turbine Fouling Tests: Review, Critical Analysis, and Particle Impact Behavior Map
,”
ASME J. Eng. Gas Turbines Power.
,
141
(
3
), p.
032601
.
7.
Dunn
,
M. G.
,
2012
, “
Operation of Gas Turbine Engines in an Environment Contaminated With Volcanic Ash
,”
ASME J. Turbomach.
,
134
(
5
), p.
051001
.
8.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.
9.
Jasak
,
H.
, and
Beaudoin
,
M.
,
2011
, “
OpenFOAM Turbo Tools: From General Purpose CFD to Turbomachinery Simulations
,”
ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Symposia – Parts A, B, C, and D, Fluids Engineering Division Summer Meeting
,
Hamamatsu, Shizuoka, Japan
,
July 24–29
, Vol. 1, pp.
1801
1812
.
10.
Beaudoin
,
M.
,
Nilsson
,
H.
,
Page
,
M.
,
Magnan
,
R.
, and
Jasak
,
H.
,
2014
, “
Evaluation of an Improved Mixing Plane Interface for OpenFOAM
,”
Conf. Ser.: Earth Environ. Sci.
,
22
(
2
), p.
022004
.
11.
Ghenaiet
,
A.
,
2019
, “
Prediction of Erosion in an Axial Turbine With Initial Position of Blade
,”
Proceedings of the 13th European Turbomachinery Conference
, Paper No. ETC2019-111.
12.
Hamed
,
A. A.
,
Tabakoff
,
W.
,
Rivir
,
R. B.
,
Das
,
K.
, and
Arora
,
P.
,
2004
, “
Turbine Blade Surface Deterioration by Erosion
,”
ASME J. Turbomach.
,
127
(
3
), pp.
445
452
.
13.
Tabakoff
,
W.
,
Hamed
,
A.
, and
Metwally
,
M.
,
1991
, “
Effect of Particle Size Distribution on Particle Dynamics and Blade Erosion in Axial Flow Turbines
,”
ASME J. Eng. Gas Turbines Power
,
113
(
4
), pp.
607
615
.
14.
Bidwell
,
C. S.
,
2012
, “
Ice Particle Transport Analysis With Phase Change for the e3 Turbofan Engine Using lewice3d Version 3.2
,” Technical Report ™-217700, NASA STI Report.
15.
Mustafa
,
Z.
,
Pilidis
,
P.
,
Amaral Teixeira
,
J.
, and
Ahmad
,
K.
,
2006
, “
CFD Aerodynamic Investigation of Air–Water Trajectories on Rotor-Stator Blade of an Axial Compressor for Online Washing
,”
Turbo Expo: Power for Land, Sea, and Air (Turbomachinery, Parts A and B, Vol. 6), Paper No. GT2006-90745
, pp.
1385
1394
.
16.
Yang
,
H.
, and
Boulanger
,
J.
,
2013
, “
The Whole Annulus Computations of Particulate Flow and Erosion in an Axial Fan
,”
ASME J. Turbomach.
,
135
(
1
), p.
011040
.
17.
Zagnoli
,
D.
,
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2015
, “
Numerical Study of Deposition in a Full Turbine Stage Using Steady and Unsteady Methods
,”
Turbo Expo: Power for Land, Sea, and Air (Turbomachinery, Vol. 2C), GT2015-43613
,
Montreal, Quebec, Canada
,
June 15–19
.
18.
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2017
, “
Computational Simulation of Deposition in a Cooled High-Pressure Turbine Stage With Hot Streaks
,”
ASME J. Turbomach.
,
139
(
9
), p.
091005
.
19.
Shirolkar
,
J.
,
Coimbra
,
C.
, and
McQuay
,
M.
,
1996
, “
Fundamental Aspects of Modeling Turbulent Particle Dispersion in Dilute Flows
,”
Prog. Energy Combust. Sci.
,
22
(
4
), pp.
363
399
.
20.
Mashayek
,
F.
, and
Pandya
,
R.
,
2003
, “
Analytical Description of Particle/Droplet-Laden Turbulent Flows
,”
Prog. Energy Combust. Sci.
,
29
(
4
), pp.
329
378
.
21.
Balachandar
,
S.
, and
Eton
,
J. K.
,
2010
, “
Turbulent Dispersed Multiphase Flows
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
11
133
.
22.
Macpherson
,
G. B.
,
Nordin
,
N.
, and
Weller
,
H. G.
,
2009
, “
Particle Tracking in Unstructured, Arbitrary Polyhedral Meshes for Use in CFD and Molecular Dynamics
,”
Commun. Numer. Methods Eng.
,
25
(
3
), pp.
263
273
.
23.
Borm
,
O.
,
Jemcov
,
A.
, and
Kau
,
H.
,
2011
, “
Density Based Navier Stokes Solver for Transonic Flows
,”
Sixth OpenFOAM Workshop
,
State College, PA
,
June 13–16
, pp.
1
30
.
24.
Oliani
,
S.
,
Friso
,
R.
,
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
, and
Carnevale
,
M.
,
2021
, “
A Comparative Analysis of Particle-Mixing Plane Interaction in Multistage Turbomachinery Simulations
,”
European Turbomachinery Conference 14, ETC2021-544
,
Virtual Conference
,
Apr. 12–16
.
25.
Greifzu
,
F.
,
Kratzsch
,
C.
,
Forgber
,
T.
,
Lindner
,
F.
, and
Schwarze
,
R.
,
2016
, “
Assessment of Particle-Tracking Models for Dispersed Particle-Laden Flows Implemented in Openfoam and Ansys Fluent
,”
Eng. Appl. Comput. Fluid Mech.
,
10
(
1
), pp.
30
43
.
26.
Gosman
,
A. D
, and
Loannides
,
E.
,
1983
, “
Aspects of Computer Simulation of Liquid-Fueled Combustors
,”
J. Energy
,
7
(
6
), pp.
482
490
.
27.
Elghobashi
,
S.
,
1994
, “
On Predicting Particle-Laden Turbulent Flows
,”
Appl. Sci. Res.
,
52
(
1
), pp.
309
329
.
28.
Shiller
,
L.
, and
Naumann
,
A.
,
1933
, “
A Drag Coefficient Correlation
,”
Z. des Vereines Deutscher Ingenieure
,
77
(
12
), pp.
318
320
.
29.
Balan
,
C.
, and
Tabakoff
,
W.
,
1984
, “
Axial Flow Compressor Performance Deterioration
,”
20th Joint Propulsion Conference
, AIAA Paper 84-1208.
30.
Finnie
,
I.
,
1960
, “
Erosion of Surfaces by Solid Particles
,”
Wear
,
3
(
2
), pp.
87
103
.
You do not currently have access to this content.