Abstract

In this study, the flutter mechanism related to acoustic propagation characteristics of a wide-chord fan rotor was investigated numerically. The first bending mode and its two and three nodal diameters traveling wave patterns were considered. The unsteady disturbance induced by the blade vibration in the duct gradually changed from cut-off to cut-on mode by increasing the blade frequency. Flutter occurred in some specific frequency range. The upstream cut-on and downstream cut-off condition with the risk of flutter previously identified in other studies was also observed in this paper. A new flutter risk frequency in which the blade frequency was less than the upstream cut-on frequency was found. The results showed that the effects of flow features and acoustic propagation characteristics on aeroelasticity were independent. To explain why flutter was more likely to occur near stall, two sets of frequencies representing different acoustic propagation characteristics were selected to carry out aeroelastic simulations for different working conditions along the same speed line. When flutter occurred, the suction side always provided positive damping, and the pressure side always provided negative damping. This study analyzed the effect of different flow features, such as shock and radial migration, in detail. The phase difference between the pressure fluctuations on the pressure side and the blade velocity played a vital role in fan flutter.

References

1.
Vogt
,
D. M.
, and
Fransson
,
T. H.
,
2006
, “
Experimental Investigation of Mode Shape Sensitivity of an Oscillating Low-Pressure Turbine Cascade at Design and Off-Design Conditions
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
530
541
.
2.
Waite
,
J. J.
, and
Kielb
,
R. E.
,
2014
, “
Physical Understanding and Sensitivities of Low Pressure Turbine Flutter
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p.
012502
.
3.
Copeland
,
G. S.
, and
Rey
,
G. J.
,
2004
, “
Comparison of Experiments and Reduced-Order Models for Turbomachinery High-Incidence Flutter
,”
J. Fluids Struct.
,
19
(
5
), pp.
713
727
.
4.
Sanders
,
A. J.
,
Hassan
,
K. K.
, and
Rabe
,
D. C.
,
2004
, “
Experimental and Numerical Study of Stall Flutter in a Transonic Low-Aspect Ratio Fan Blisk
,”
ASME J. Turbomach.
,
126
(
1
), pp.
166
174
.
5.
Srivastava
,
R.
, and
Keith
T. G.
, Jr.
,
2005
, “
Influence of Shock Wave on Turbomachinery Blade Row Flutter
,”
AIAA J. Propuls. Power
,
21
(
1
), pp.
167
174
.
6.
Vahdati
,
M.
,
Simpson
,
G.
, and
Imregun
,
M.
,
2011
, “
Mechanisms for Wide-Chord Fan Blade Flutter
,”
ASME J. Turbomach.
,
133
(
4
), p.
041029
.
7.
Möller
,
D.
,
Jüngst
,
M.
,
Holzinger
,
F.
,
Brandstetter
,
C.
,
Schiffer
,
H.
, and
Leichtfuß
,
S.
,
2017
, “
Mechanism of Nonsynchronous Blade Vibration in a Transonic Compressor Rig
,”
ASME J. Turbomach.
,
139
(
1
), p.
011002
.
8.
Holzinger
,
F.
,
Wartzek
,
F.
,
Jüngst
,
M.
,
Schiffer
,
H.
, and
Leichtfuss
,
S.
,
2016
, “
Self-Excited Blade Vibration Experimentally Investigated in Transonic Compressors: Rotating Instabilities and Flutter
,”
ASME J. Turbomach.
,
138
(
4
), p.
041006
.
9.
Dong
,
X.
,
Zhang
,
Y.
,
Zhang
,
Z.
,
Lu
,
X.
, and
Zhang
,
Y.
,
2020
, “
Effect of Tip Clearance on the Aeroelastic Stability of a Wide-Chord Fan Rotor
,”
ASME J. Eng. Gas Turbines Power
,
142
(
9
), p.
091010
.
10.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Breard
,
C.
, and
Imregun
,
M.
,
2002
, “
Computational Study of Intake Duct Effects on Fan Flutter Stability
,”
AIAA J.
,
40
(
3
), pp.
408
418
.
11.
Lee
,
K.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2017
, “
Numerical Study on Aeroelastic Instability for a Low-Speed Fan
,”
ASME J. Turbomach.
,
139
(
7
), p.
071004
.
12.
Vahdati
,
M.
,
Smith
,
N.
, and
Zhao
,
F.
,
2015
, “
Influence of Intake on Fan Blade Flutter
,”
ASME J. Turbomach.
,
137
(
8
), p.
081002
.
13.
Zhao
,
F.
,
Nipkau
,
J.
, and
Vahdati
,
M.
,
2016
, “
Influence of Acoustic Reflections on Flutter Stability of an Embedded Blade Row
,”
Proc. Inst. Mech. Eng. A J. Power Energy
,
230
(
1
), pp.
29
43
.
14.
Gallardo
,
J. M.
,
Sotillo
,
A.
, and
Bermejo
,
Ó
,
2019
, “
Study of the Effect of the Scatter of Acoustic Modes on Turbine Flutter
,”
ASME J. Turbomach.
,
141
(
10
), p.
101010
.
15.
Vahdati
,
M.
, and
Cumpsty
,
N.
,
2015
, “
Aeroelastic Instability in Transonic Fans
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022604
.
16.
Broatch
,
A.
,
García-Tíscar
,
J.
,
Roig
,
F.
, and
Sharma
,
S.
,
2019
, “
Dynamic Mode Decomposition of the Acoustic Field in Radial Compressors
,”
Aerosp. Sci. Technol.
,
90
, pp.
388
400
.
17.
Buchwald
,
P.
,
Farahmand
,
A.
, and
Vogt
,
D. M.
,
2019
, “
On the Influence of Blade Aspect Ratio on Aerodynamic Damping
,”
ASME J. Turbomach.
,
141
(
10
), p.
101007
.
18.
Zhou
,
C.
,
Li
,
Z.
,
Huang
,
S.
,
Han
,
G.
,
Lu
,
X.
,
Zhao
,
S.
, and
Zhu
,
J.
,
2021
, “
Numerical Investigation on the Aerodynamic Performance and Flow Mechanism of a Fan With a Partial-Height Booster Rotor
,”
Aerosp. Sci. Technol
,
109
, p.
106411
.
19.
Zhao
,
F.
,
Smith
,
N.
, and
Vahdati
,
M.
,
2017
, “
A Simple Model for Identifying the Flutter Bite of Fan Blades
,”
ASME J. Turbomach.
,
139
(
7
), p.
071003
.
20.
Rendu
,
Q.
,
Vahdati
,
M.
, and
Salles
,
L.
,
2019
, “
Radial Decomposition of Blade Vibration to Identify a Stall Flutter Source in a Transonic Fan
,”
ASME J. Turbomach.
,
141
(
10
), p.
101011
.
21.
Chahine
,
C.
,
Verstraete
,
T.
, and
He
,
L.
,
2019
, “
A Comparative Study of Coupled and Decoupled Fan Flutter Prediction Methods Under Variation of Mass Ratio and Blade Stiffness
,”
J. Fluids Struct.
,
85
, pp.
110
125
.
22.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
SAE Trans.
,
70
, pp.
309
332
.
23.
Hellmich
,
B.
, and
Seume
,
J. R.
,
2008
, “
Causes of Acoustic Resonance in a High-Speed Axial Compressor
,”
ASME J. Turbomach.
,
130
(
3
), p.
031003
.
24.
Zhao
,
F.
,
Nipkau
,
J.
, and
Vahdati
,
M.
,
2015
, “
A Simple Low-Fidelity Model for Embedded Blade Row Flutter Prediction
,”
Proceedings of the ASME Turbo Expo 2015
,
Montreal, Quebec, Canada
,
ASME Paper No. GT2015-42173
.
25.
Stapelfeldt
,
S.
, and
Vahdati
,
M.
,
2018
, “
On the Importance of Engine-Representative Models for Fan Flutter Predictions
,”
ASME J. Turbomach.
,
140
(
8
), p.
081005
.
26.
Srinivasan
,
A. V.
,
1997
, “
Flutter and Resonant Vibration Characteristics of Engine Blades
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
742
775
.
27.
Pagès
,
V.
,
Duquesne
,
P.
,
Aubert
,
S.
,
Blanc
,
L.
,
Ferrand
,
P.
,
Ottavy
,
X.
, and
Brandstetter
,
C.
,
2021
, “
UHBR Open-Test-Case Fan ECL5/CATANA, Part 2: Mechanical and Aeroelastic Stability Analysis
,”
14th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
, Paper No. ETC2021-625.
28.
Hall
,
K. C.
, and
Ekici
,
K.
,
2005
, “
Multistage Coupling for Unsteady Flows in Turbomachinery
,”
AIAA J.
,
43
(
3
), pp.
624
632
.
You do not currently have access to this content.