Abstract

Despite advances in computational power, the cost of time-accurate flows in axial compressor and fan stages with spatially non-uniform inflow is still too high for design-stage use in industry. Body force modeling reduces the computation time to practical levels, mainly by reducing the problem to a steady one. These computations are important to determine efficiency penalties associated with non-uniform inflows. Previous studies of body force methods have, in most cases, relied on computations with the presence of the blades to calibrate loss models. In some recent studies, uncalibrated models have been used, but such models can drop off in accuracy at conditions where separation would occur on the blade surfaces. In this paper, a neural-network-based loss model introduced in a recent paper by the authors is implemented for NASA rotor 67 for both uniform and non-uniform inflow conditions. For uniform inflow, the spanwise trend of entropy variation is generally captured with the new body force model. Although there are discrepancies at some span fractions, the present model generally predicts the compressor’s isentropic efficiency to within 3% compared to bladed Reynolds-averaged Navier–Stokes simulations. For non-uniform inflow, we consider a stagnation pressure profile representative of boundary layer ingestion. The results show that the region of maximum entropy generation is captured by the present model and the prediction of isentropic efficiency penalty due to the non-uniform inflow is only 0.2 points less than that determined from bladed computations.

References

1.
Stuermer
,
A.
,
2019
, “
DLR TAU-Code URANS Turbofan Modeling for Aircraft Aerodynamics Investigations
,”
Aerospace
,
6
(
11
), p.
121
.
2.
Fidalgo
,
V. J.
,
Hall
,
C. A.
, and
Colin
,
Y.
,
2012
, “
A Study of Fan-Distortion Interaction Within the NASA Rotor 67 Transonic Stage
,”
ASME J. Turbomach.
,
134
(
5
), p.
051011
.
3.
Haug
,
J. P.
, and
Niehuis
,
R.
,
2018
, “
Full Annulus Simulations of a Transonic Axial Compressor Stage With Distorted Inflow at Transonic and Subsonic Blade Tip Speed
,”
Int. J. Turbomach. Propul. Power
,
3
(
1
), p.
7
.
4.
Thouault
,
N.
,
Breitsamter
,
C.
, and
Adams
,
N.
,
2011
, “
Numerical Investigation of Inlet Distortion on a Wing-Embedded Lift Fan
,”
J. Propul. Power
,
27
(
1
), pp.
16
28
.
5.
Mao
,
Y.
, and
Dang
,
T. Q.
,
2020
, “
Simple Approach for Modeling Fan Systems With a Computational-Fluid-Dynamics-Based Body-Force Model
,”
J. Propul. Power
,
36
(
5
), p.
37742
.
6.
Peters
,
A.
,
Spakovszky
,
Z. S.
,
Lord
,
W. K.
, and
Rose
,
B.
,
2015
, “
Ultrashort Nacelles for Low Fan Pressure Ratio Propulsors
,”
ASME J. Turbomach.
,
137
(
2
), p.
021001
.
7.
Minaker
,
Q. J.
, and
Defoe
,
J. J.
,
2019
, “
Prediction of Crosswind Separation Velocity for Fan and Nacelle Systems Using Body Force Models: Part 2: Comparison of Crosswind Separation Velocity With and Without Detailed Fan Stage Geometry
,”
Int. J. Turbomach. Propul. Power
,
4
(
4
), p.
41
.
8.
Defoe
,
J. J.
,
Etemadi
,
M.
, and
Hall
,
D. K.
,
2018
, “
Fan Performance Scaling With Inlet Distortions
,”
ASME J. Turbomach.
,
140
(
7
), p.
71009
.
9.
Hill
,
D. J.
, and
Defoe
,
J. J.
,
2020
, “
Scaling of Incidence Variations With Inlet Distortion for a Transonic Axial Compressor
,”
ASME J. Turbomach.
,
142
(
2
), p.
021003
.
10.
Xie
,
T.
, and
Uranga
,
A.
,
2020
, “
Development and Validation of Non-axisymmetric Body-Force Propulsor Model
,”
AIAA Propulsion and Energy 2020 Forum
,
Virtual Events
.
11.
Awes
,
A.
,
Dufour
,
G.
,
Daon
,
R.
,
Marty
,
J.
,
Barrier
,
R.
, and
Carbonneau
,
X.
,
2021
, “
Unsteady Body Force Methodology for Fan Operability Assessment Under Clean and Distorted Inflow Conditions
,”
AIAA Scitech 2021 Forum
,
Virtual Events
.
12.
Hall
,
D. K.
,
Greitzer
,
E. M.
, and
Tan
,
C. S.
,
2017
, “
Analysis of Fan Stage Conceptual Design Attributes for Boundary Layer Ingestion
,”
ASME J. Turbomach.
,
139
(
7
), p.
071012
.
13.
Mao
,
Y.
, and
Dang
,
T. Q.
,
2020
, “
A Three-Dimensional Body-Force Model for Nacelle-Fan Systems Under Inlet Distortions
,”
Aerosp. Sci. Technol.
,
106
, p.
106085
.
14.
López de Vega
,
L.
,
Dufour
,
G.
, and
García Rosa
,
N.
,
2021
, “
Fully Coupled Body Force-Engine Performance Methodology for Boundary Layer Ingestion
,”
J. Propul. Power
,
37
(
2
), p.
B37743
.
15.
Peters
,
A.
,
2013
, “
Ultra-Short Nacelles for Low-FPR Propulsors
,” PhD thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
16.
Dufour
,
G.
, and
Thollet
,
W.
,
2016
, “
Body Force Modeling of the Aerodynamics of the Fan of a Turbofan at Windmill
,”
Proceedings of ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
, Paper No. GT2016-57462.
17.
Gong
,
Y.
,
Tan
,
C. S.
,
Gordon
,
K. A.
, and
Greitzer
,
E. M.
,
1999
, “
A Computational Model for Short-Wavelength Stall Inception and Development in Multistage Compressors
,”
ASME J. Turbomach.
,
121
(
4
), pp.
726
734
.
18.
Benichou
,
E.
,
Dufour
,
G.
,
Bousquet
,
Y.
,
Binder
,
N.
,
Ortolan
,
A.
, and
Carbonneau
,
X.
,
2019
, “
Body Force Modeling of the Aerodynamics of a Low-Speed Fan Under Distorted Inflow
,”
Int. J. Turbomach. Propul. Power
,
4
(
3
), p.
29
.
19.
Godard
,
B.
,
Jaeghere
,
E. D.
, and
Gourdain
,
N.
,
2019
, “
Efficient Design Investigation of a Turbofan in Distorted Inlet Conditions
,”
Proceedings of ASME Turbo Expo 2019
,
Phoenix, AZ
.
20.
Pazireh
,
S.
, and
Defoe
,
J.
,
2021
, “
A New Loss Generation Body Force Model for Fan/Compressor Blade Rows: An Artificial-Neural-Network Based Methodology
,”
Int. J. Turbomach. Propul. Power
,
6
(
1
), p.
5
.
21.
Denton
,
1993
, “
Loss Mechanisms in Turbomachines
,” Turbo Expo: Power for Land, Sea, and Air, Volume 2: Combustion and Fuels; Oil and Gas Applications; Cycle Innovations; Heat Transfer; Electric Power; Industrial and Cogeneration; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; IGTI Scholar Award,
ASME
, pp.
621
656
, V002T14A001.
22.
Drela
,
M.
, and
Youngren
,
H.
,
2008
, “A User’s Guide to MISES 2.63,” MIT Aerospace Computational Design Laboratory, February.
23.
ANSYS
,
2019
,
ANSYS CFX- CFD Software, Release 19.1
.
24.
Menter
,
F.
,
1993
, “
Zonal Two Equation k–w Turbulence Models for Aerodynamic Flows
,”
23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference
,
Orlando, FL
, AIAA.
25.
ANSYS
,
2019
,
ANSYS CFX-Solver Theory Guide, Release 19.1
.
26.
ANSYS
,
2019
,
ANSYS Fluent-CFD Software, Release 19.1
.
27.
ANSYS
,
2019
,
ANSYS Turbogrid-CFD Mesh Generator Software, Release 19.1
.
28.
PointWise
, 2017,
POINTWISE—CFD Mesh Generator Software, V18.3R1
.
29.
Pazireh
,
S.
,
2020
, “
Body Force Modeling of Axial Turbomachines Without Calibration
,” PhD thesis,
University of Windsor
,
Windsor
.
You do not currently have access to this content.